裂变增长模式下的流量分析
裂变增长在营销推广中一直有着重要地位,大家都知道,如今的流量难获取且成本高,更多平台选择用裂变的方式进行引流。
裂变增长在营销推广中一直有着重要地位,大家都知道,如今的流量难获取且成本高,更多平台选择用裂变的方式进行引流;本文作者分享了关于裂变增长模式下的流量分析,我们一起来看一下。
近两年,增长黑客、流量池、裂变营销、私域流量这类增长相关话题一直备受关注;在付费流量成本不断上涨的环境下,以裂变为代表的“免费”流量获取方式,被越来越多的平台青睐;没有哪种流量可以完全免费获得,品牌、内容、传播都需要成本,这里的“免费”是对比付费渠道的相对免费。
对于裂变营销,市场上刷屏的成功案例越来越多,工作中也经历了若干项目;今天我就以裂变活动为例,总结一下裂变活动从策划至完结,各个环节中需要的流量数据分析内容及分析思路。
01 项目流程
完整裂变活动流程及各环节对应的数据分析框架如下:
由此可见裂变活动的每个环节都重度依赖数据分析,数据决策的正确与否直接决定了活动的成败;框架中各个环节串联在一起,涉及流量结构、流量质量、用户行为等方面内容,因此完整的参与一次裂变活动分析,也就相当于对产品流量进行一次全局复盘分析。
02 目标评估
1. 评估量化目标设定是否合理
工作中,一些没有经验数据借鉴的场景下,目标设定的方法就是“拍脑门”;但用户增长是以目标为导向,裂变活动的目标必须设定合理;判断其是否合理的标准其实很简单就是看裂变度(K)和活动参与用户占比是否合理。
裂变度(K)=被邀请的新增用户数/发起邀请的老用户数
活动参与用户占比=参与活动用户数/活跃用户数
假设,一APP的DAU为20W,那么裂变活动的新增用户总量目标设定为10W是否合理?
K=1代表参与活动的每个用户都邀请到了新用户,这种情况在实际业务中很难达到。按照活动策划合格标准预估,K=0.6,参与活动用户数则为16.7W,占活跃用户比例83%,显然目标过高。
那么建议目标值是多少呢?
保守预估:K=0.5,30%活跃用户参与,那么目标应设定为3W;激进预估:K=0.7,50%活跃用户参与,那么目标应设定为7W;这样就给出了个预估的区间,最终可结合业务实际进行目标设定。
2. 选择裂变活动目标种子用户
目标种子用户即为能够参与活动且转化能力较高的用户。为了使K尽可能的高,在活动入口全局覆盖的同时,还应该有侧重的进行活动推荐;在种子用户选择时,需要对于活跃用户的行为进行分析。
以信息流内容APP为例,用户选择时需关注用户浏览、评论、转发、收藏、问题反馈等相关行为的占比;如A用户浏览、收藏较多;B用户浏览、评论较多;C用户浏览、转发较多;那么种子用户选取优先级C>B>A。
在实际工作中,可以对用户的行为做分值设置,根据行为占比加权平均计算出用户分值,选择分值较高的用户作为种子用户。
种子用户选取也是当前产品的用户行为盘点、用户(流量)质量评估,选取种子用户的行为评分可复用于流量质量评估。
03 数值策划
数值策划部分需要按顺序进行。
- Step1:产品设计出分享页面后,需要根据设计出的页面分享路径、转化经验数据预估分享页面转化漏斗;
- Step2:根据转化漏斗、种子用户数、目标拉新数测算传播度数值;
- Step3:根据活动预算、传播度数值测算成本数值
1. 分享页面用户各环节转化行为数据预估
页面转化漏斗的预估要点是:
- 明确用户访问的产品路径;
- 考虑各个动作的流失不用遗漏,不同产品的活动设计差异很大,在实际预估中遵循预估要点即可。
根据常见产品路径粗略归纳计算公式如下:
活动入口转化=DAU*活动入口页面访问比例*活动ICON点击率
分享路径转化=活动页面曝光*分享按钮点击率*被分享页面成功曝光率*被分享页面触达用户按钮点击率
2. 裂变模型传播度、成本数值测算
传播度数值测算,通俗的讲就是套路设计,计算老用户需要产生多少传播才能获得权益奖励。
以用户发起福袋帮拆赢现金红包活动为例,老用户发起帮拆邀请后,每个帮拆用户可拆得的金额该如何设定呢?新用户比老用户拆的多?老用户一定拆不开嘛?一系列问题接踵而至。
数值设定的要点:
- 不易过难提升期望值;
- 拉新为传播的主要目标、曝光为次要目标。
数值设置方式可如下例:
假设发放福袋的金额固定为10元钱:
- 第一个帮拆用户帮拆金额设为5元左右的随机数,提升用户获得奖励的期望值;
- 在邀请到帮拆新用户前,从第二个开始的帮拆老用户帮拆金额设置为0.5元左右随机数字,设置1元保护,当福袋剩余金额小于等于1元时随机数字调整为0.01元左右直至福袋拆完;
- 从第二个开始的帮拆用户如果为新用户那么帮拆的金额设置成1元左右的随机数字,如已邀请到新用户取消1元保护。
那么成本该如何保证呢?
结合活动预算、新增用户目标预期,能够计算可接受获取新增用户成本;根据数值设置的极大场景、极小场景即可推算裂变模型下的获取新增用户成本区间;最终通过调节影响拆福袋难易程度的参数,控制模型下的获取新增用户成本在可接受范围内,模型即可生效。
04 活动监控
1. 活动监控数据模板制作&数据监控
同样已拆福袋活动获得红包活动为例,需要从发起用户、帮拆用户两个角度进行数据收集。
包含的要点是:
- 分享链接、分享页面、中间页面的浏览、点击指标监控;
- 触达用户数、发放权益数量监控。
发起用户角度:
帮拆用户角度:
2. 结合数据表现及时评估效果达成
总结裂变活动核心结果值如下:
- 活动触达老用户数→参与活动老用户数→活动参与率
- 获得权益老用户数→活动带来新增用户数→裂变度K
- 活动支出权益金额→活动预算消耗进度→活动拉新成本
核心结果值能够表明活动目标达成情况、预算花费情况、活动成功与否;在活动进行中需要随时关注核心指标变化,根据数据不同表现及时调整活动难易度、预算投入,使活动达成最优效果。
05 效果验收
1. 活动效果数据盘点
活动效果数据盘点核心结果指标与过程监控一致,需要盘点的内容是:此次活动花了多少钱?获取了多少新用户?获客成本跟付费渠道相比是多是少?有多少老用户参与活动?裂变度是多少?哪个环节的转化率较低?该如何优化?
2. 引入流量质量分析
通过活动引入的流量,同样需要监控用户行为、评估流量质量。监控的数据指标、分析方法与付费渠道一致。
作者:大鹏
来源:一个数据人的自留地
扫一扫 微信咨询
商务合作 联系我们