用户流失预测模型 – 青瓜传媒 //www.f-o-p.com 全球数字营销运营推广学习平台! Thu, 06 Dec 2018 07:21:46 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.2.21 https://static.opp2.com/wp-content/uploads/2021/04/favicon-1.ico 用户流失预测模型 – 青瓜传媒 //www.f-o-p.com 32 32 如何利用数据驱动运营增长呢? //www.f-o-p.com/109215.html Thu, 06 Dec 2018 07:21:38 +0000 //www.f-o-p.com/?p=109215

 

随着数据时代的来临,以前的粗放式管理已不再适应潮流,我们需要进行精细化管理,特别是以C端为驱动的运营模式,每一个运营的细节都离不开数据的支撑,互金行业也不例外,各大银行和互联网金融巨头也纷纷在抢占用户数据市场。

一、搭建数据指标体系

首先我们要搭建一套比较完善的数据指标体系。其实搭建数据指标体系,就是在梳理我们的分析思路,很多人在做数据分析时,经常会不知道从哪方面入手,分析的内容和指标也会比较散乱,因此也会被人质疑分析结果是否正确。所以搭建一套完善数据运营指标体系是非常有必要的,它可以帮助我们理顺思路,确保数据分析结构体系化、数据分析维度的完整性以及为后续数据分析的开展指引方向。

二、如何设计数据指标体系

指标是连接问题和数据的纽带,只有选择合适的指标才能充分反映问题,一个好的指标是要可量化、易观测的;那么如何来搭建数据指标体系呢?我们可以通过一些营销的管理模型来设计数据指标体系,例如5W2H分析法、4P分析理论、用户生命周期、逻辑树分析法等。

当然相应的分析模型肯定要结合实际业务模式和分析目的来进行,没有业务逻辑的数据分析是不会产生任何价值的。

例如,互金行业中的数据指标体系,我们可以根据用户生命周期来进行搭建。

 

数据指标体系设计完成后,我们就可以根据用户在不同阶段不同场景下,通过埋点事件来设计数据采集方案,这其实是通过业务驱动指标设计,再驱动数据收集的过程。

三、数据驱动运营增长

那获取到用户数据后,我们要如何应用数据,让数据产生价值呢,我们主要通过以下三方面来进行描述。

01、用数据优化运营策略

通过用户行为数据收集之后,我们就可以知道在运营活动当中,用户浏览注册下载绑卡投资转化率是多少,每个产品页面浏览时长,浏览次数是多少,首投人数、投资金额等;但数据是要结合业务场景,进行汇总对比分析,才会有意义的,否则就仅仅是数字而已。

例如我们最常见的漏斗分析法,当我们发现用户的投资转化率有30%,这样一看,转化率好像还挺高的,但如果我们跟其他类似产品相对比,跟同环节不同细分用户群相对比,发现其他类似产品或其他细分用户群的转化率是40%,我们才知道这环节上还有很大的优化空间在。

02、利用数据验证运营策略

互联网产品运营当中,我们经常会遇到多个产品设计和运营方案的选择,甚至于界面按钮颜色一句文案的不同也会有争议,虽然相对于整个运营方案来说,这只是一个细节问题,但对于C端用户来说,往往就是细节决定一切,在这个信息泛滥的时代,往往争取的就是你能不能在第一时刻进入用户的心里。

这时我们可以采取A/B测试,在一切条件都相同的前提下,只有一个变量不同,利用数据来告诉我们那种方案比较可行,让数据来验证运营策略是否正确,降低试错成本;当然在进行A/B测试时,最好是数据量和数据密度不要太低, 以及要有足够的时间进行测试,不然是比较难得到统计结果的。

举个例子,蚂蚁财富app,在引导新用户转化为首投用户时,采取了进度条的展示形式,主要目的就是为了制造紧迫感,虽然是利用用户心理层面因素,但展现形式却有多种。

上面这两种进度条的设计,第一种是利用用户焦虑、恐慌的情绪,让用户觉得在不进行抢购就没有了;第二种则是利用用户大众心理,抢购的人数这么多,那自己是否也可以跟着试试看;这两种设计,各有其考虑的因素,很难说那种会比较好,这时候就可以使用A/B测试,让数据来进行验证。

03、利用数据指导运营策略

数据与数据之间都是有关联的,如果你不知道,那只是你还没有发现它们之间的关联关系而已,最经典的数据分析案例莫过于沃尔玛的啤酒和尿布了,这个案例相信大家都有听说过的, 当一个商业目标对多种行为、画像等信息有关联时,我们就可以通过数据挖掘手段进行数据建模,来预测用户的下一步行为,从而针对性的提出运营解决方案。

例如关于新用户流失严重问题,我们可以采取聚类算法,建立用户流失预测模型,通过数据刻画出流失用户的画像信息,有什么属性特征、行为特征以及流失周期是多长,这样我们可以更加准确的抓住具有潜在流失倾向的用户。

像互金行业,关于用户流失预测模型,我们就可以从用户的投资行为、在投资金以及流失周期来进行构建。

从上面,我们可以看出预流失用户的行为倾向是:近期内无投资行为、有在投资金但想提现的用户,那针对这部分用户,我们就要采取一些留存激活策略了。

最后,数据分析可以给我们提供有效信息,指导营销决策,但也不要迷信数据,要换位思考,这样数据才能发挥其真正价值。

 

作者:互金营销研究所,授权青瓜传媒发布。

来源:互金营销研究所(ITFINLAB

]]>
用户流失预测模型,如何进行效果评估? //www.f-o-p.com/85888.html //www.f-o-p.com/85888.html#respond Mon, 11 Jun 2018 02:48:46 +0000 //www.f-o-p.com/?p=85888 用户流失预测模型

本文作者通过详细的例子阐述了如何评价用户流失预测模型的效果,以及客户流失预测模型的目的:有效挽留和关怀客户。

一、一个重要指标:提升度

用来评估客户流失预测模型预测效果好坏的一个重要指标,就是提升度。

所谓提升度,简单来说,使用模型预测客户流失比不使用模型要好多少。

如图,将客户按流失概率由大到小排名,图中的点(10%,50%)表示流失排名前10%的客户包含了实际流失客户的50%。

换句话说,如果企业有300万的客户,平均流失率为1%,如果对前10%的客户进行捕获,实际上能够捕获到真实流失的客户15000人(即300万×1%×50%)。

图中蓝线表示在没有预测模型指导的情况下随机抽取客户的结果。

这条线其实很好理解,如果抽取10%的客户,则能够捕获到300万×10%×1%个流失客户,占到总实际流失客户的300万×10%×1%÷(300万×1%)=10%,所以这条线实际上是一条斜率为45度的直线。

图中红线表示客户流失预测模型预测下的结果。

如线上的点(10%,50%)表示流失排名前10%的客户包含了实际流失客户的50%。所以,对于流失排名前10%的客户,使用模型预测的效果是没有使用模型预测的5倍!这就是所谓的提升度。

上图的红线就是传说中的ROC曲线,全称Receiver Operating Characteristic Curve,中文名叫接收者操作特性曲线。

蓝线就是基准线。一般来说,ROC曲线与偏离基准线,越向左上方靠拢,模型的预测效果就越好。

提升度对于评判模型预测性能好坏固然很重要。但是,人们往往只关注有由提升度所给出的模型预测效果,却忽视(或者没有去评估)客户流失预测模型所表现出来的“应用效果”。

二、关注“应用效果”

人们一般比较关心:有了这样一个流失预测模型,或者说在这个模型的指导下对高流失可能客户开展挽留关怀活动,下个月的客户流失率会不会显著地降低呢?

这样的看法是不正确的,因为客户流失预测模型只是揭示了“什么样的客户更可能会流失”这样一个客观规律。

实际情况是,在使用客户流失预测模型之后,客户流失率往往得不到大幅度的降低。下面通过一个证券行业的例子来说明。

假设某个券商A,当前有300万的客户,月平均流失率为1%。

为了更好地建立预测模型,在开发模型的过程,仅对有效客户进行建模,也就是说,在建模之前,需要通过设定一定的条件来剔除非有效客户,如机构客户、资产极大或极小客户、无交易行为客户,等等。

这样,有效客户数120万,月平均流失1.8万,流失率为1.5%。最后,券商A针对有效客户开发了客户流失预测模型,其效果可以用上面的图示来表示,即如果选取最具流失倾向的前10%客户作为目标活动客户,可以包括所有实际流失客户的50%。

由于券商A的各方面资源紧缺,客服人员人数有限。所以券商A决定根据流失预测模型的高流失倾向的客户名单,对有效客户开展一对一的针对性挽留关怀活动,而对非有效客户,则希望通过普通的营销政策进行挽留。

券商A按照流失预测模型给出的流失倾向评分从高到低,依次选择这次活动的目标客户,即从120万的有效客户中选取了前5%的高流失倾向客户作为目标客户,即6万。

接下来,客服人员将在“挽留月”对这6万客户进行一对一的挽留关怀工作。券商A希望能在月末的流失率统计中有一个令人满意的结果。

这6万客户中真实流失的客户有120×5%×1.5%×5=0.45万个,若能全部挽留住这0.45万个客户自然是好,但在实际挽留关怀工作中,却是很难做到。

我们需要注意客户流失预测模型在实际应用中会引起耗散的几个地方:

  1. 在全部客户中,仅对有效客户进行针对性挽留关怀,假设比例a,这里a=120/300=40%
  2. 目标活动客户选取时,仅对高流失倾向客户进行挽留,假设选取比例b=5%
  3. 客户挽留过程,存在目标活动客户的接触成功率,假设c
  4. 客户接触成功的客户中又存在挽留成功率问题,假设d

根据之前券商A在客服方面的经验,a、b、c、d都是可以估算的。这里不妨假定,成功接触率c为50%,接触成功的客户中有流失倾向的人的挽留成功率d为30%。

进一步假设流失客户在接触到和接触不到的客户中均匀分布,我们可以计算出券商A根据流失预测模型来采取挽留关怀活动能够成功挽留下来的客户数量为

成功挽留的客户数=总客户数×有效客户比例a×高流失倾向客户比例b×有效客户的平均流失率×模型提升度×接触成功率c×接触到的客户的成功挽留率

d=3000000×40%×5%×1.5%×5×50%×30%=675人

在这种情况下,总体流失率=(30000-675)/3000000=0.9775%,和不做活动的1%几乎没有什么区别!

从这里我们可以看出,客户流失预测模型并没有给企业带来关于客户流失率方面的多大改变。看到这样的结果,有人不禁要问,那还要不要做流失预测模型呢?这是一个非常现实的问题。

三、明确目的:挽留关怀客户

建立流失预测模型的目的是为了减低客户流失率呢,还是为了提高关怀与挽留工作的有效性呢?

如果是单纯为了大幅度降低客户流失率,流失预测模型所起到的效果是相对较少的。原因很简单,流失预测模型其实是一种方法论,它并不能直接带来客户流失率的降低。

打个比方,就好比给病人看病,再先进的医疗设备也只能帮助病人查毛病,而不能帮助病人养好病。

证券行业的流失预测模型,在客户挽留中所起的作用也只能是帮助券商找到流失倾向比较高的客户群,而不能直接导致流失率的下降。这一点要清楚。

纵观证券行业,券商通常认定真正流失的客户是指发生了消资金账户、转托管和撤销指定等行为的客户,但客户流失预测模型的流失定义通常是针对客户资产是否严重缩水。

这样,预测模型不仅包括了上述三种客户,而且还包括了这样的一些客户:由于资产缩水严重而超出自己能够承受的预期损失、被深度套牢而很可能转为睡眠客户。

这些客户虽然看起来仍然还是券商的客户,但已由活跃客户逐渐转为不活跃,不再给券商贡献利润价值。

从证券行业的实际情况来看,发生消资金账户、转托管和撤销指定等行为的客户流失不可避免,而且占一定的比例。但后一种客户,却是可以通过挽留关怀来使客户继续保持活跃,继续为券商贡献利润价值。

所以,客户流失预测模型的目的应该是为了提高挽留关怀工作的有效性,最大限度地让客户保持活跃状态,而不是所谓的大幅度降低客户流失率

客户保持工作的最佳时机是在其未流失时,所谓防患于未然。

面对日益激烈的市场竞争,大多数企业越来越重视客户保持工作,通过不断地投入来做好客户关怀与挽留工作,最大可能地留住客户。

但它们通常都会面临这样的问题:如何在企业资源紧缺的情况下,提高客户关怀与挽留工作的效率,如何能够在较少的客户接触成本上关怀到更多实际将会流失的客户呢?

这就要借助于基于数据挖掘的客户流失预测模型了。

继续上面的例子,假定券商A每月可以达到的客户接触为6万人次,而且把要接触的对象集中在了高价值客户上。

如果根据由客户流失预测模型给出的高流失倾向的前5%的客户名单开展关怀与挽留工作,刚好120×5%=6万人,这个时候每月可以成功挽留住的客户数为675人。

如果没有模型指导,每月可以成功挽留住的客户数为

总客户数×高价值客户比例a×高流失倾向客户比例b×高价值客户的平均流失率×接触成功率c×接触到的客户的成功挽留率

d =3000000×40%×5%×1.5%×50%×30%= 135人

通过简单的比较就可以发现,基于完全相同的人员投入、完全相同的接触成功率、完全相同的挽留成功率,有模型指导的挽留比没有模型指导的挽留在每月的工作中成功地多挽留了675-135=540个客户。

假设这些成功留住的客户可以继续保持活跃状态的时长为半年(比较保守的估计),有效客户平均贡献佣金每月100元,则每月由于挽留效率的提高可以获得的额外收益将为540×100×6=324000元。

一年下来,年总收益将增加324000×12=3888000元。

这已经是最为保守的估算了,因为据了解,多数客户的月平均佣金贡献高达几百元,甚至几千元。

再进行更为保守的估算,如果在模型指导下选取前5%的高流失倾向客户作为目标客户时,模型的提升度为3。这样的情况下,每年的收益依然能够增加1944000元,投资回报依然很大!

实际上,我们的估算忽略了开展挽留关怀活动所耗费的成本问题。之所以忽略,是因为我们在没有模型指导和有模型指导下进行挽留活动所花费的成本都是一样的。我们只需要比较在有模型指导下进行挽留活动比没有模型指导增加了多少收益。

通过这些估算,只是为了说明一个问题:客户流失预测模型不是开发好了,部署起来,就扔在那里,每月按时跑数,也不能只看到模型预测结果准还是不准,关键是要应用到实际的客户挽留关怀工作当中去,这样才能看到实实在在的效果。

 

本文作者@jerryhuang_00bf   由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务    广告投放平台    龙游游戏

]]>
//www.f-o-p.com/85888.html/feed 0