诸葛IO – 青瓜传媒 //www.f-o-p.com 全球数字营销运营推广学习平台! Tue, 18 Apr 2023 06:27:04 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.2.21 https://static.opp2.com/wp-content/uploads/2021/04/favicon-1.ico 诸葛IO – 青瓜传媒 //www.f-o-p.com 32 32 4大维度,详解精细化运营! //www.f-o-p.com/97594.html Tue, 04 Sep 2018 10:09:05 +0000 //www.f-o-p.com/?p=97594 精细化运营

 

移动互联网对于流量的重视程度,已经超过了所有。没有流量,没有用户,何谈商业模式,更不要说诗与远方了。一个app的拉新成本少则十几块,多则几十甚至上百,外加小程序的爆发,微信建立微信os,APP生态内忧外患。

 

标志一个APP健康度的重要指标就是其新用户的获取能力是否遵循了:营收-获客成本≥0元。为了保证APP正常运营,我们通常会从降低获客成本、提高GMV两方面着手降低获客成本虽说可以通过寻找新渠道等实现,但是流量的分布已经呈现寡头趋势,未来成本只会越来越高。所以提高GMV就成了APP运营的重要任务。、

 

随着用户体量持续变大,如果仅靠一种策略,或者单一功能,很难满足用户的个性化需求,进而会导致用户活跃低,留存差,付费转化低。因此,“重视每一次与用户接触的机会,进行精细化运营”就成为了提高GMV的核心。

 

什么是精细化运营 ?可以理解为是基于大数据,围绕用户、场景、流程、产品所做的差异化运营策略。

那么如何进行呢?

 

首先,聚焦在用户上

想要进行精细化运营的第一步就是要了解用户,只有了解用户,才能提供有针对性的个性化服务,就能实现千人千面的差异化运营。这其中让用户“标签化”是了解用户的常用手段,比如:

产品经理(工作种类)

女性,产品经理(性别+工作种类)

北京,女性,产品经理(地域+性别+工作种类)

标签维度越多、划分越细,所能构建的用户画像就越全面越精准。

要想细化用户标签,我们就需要在不同维度上了解用户偏好,进而分析他们特征背后所代表的用户集群。比如下图,通过设置了属性标签、兴趣标签、场景标签三类细分的子集,通过大数据分析得到了精准的的用户画像。

1.png

不过,问题的关键在于如何沉淀更多的用户标签,下面是运营人员常用的几种方式:

1、与公司研发协作,将有效数据逐一留存、记录。

例如前端的分组访问、点击、浏览等,后端的下单、付费等和数据研发通过ip库撞库,实现地域、机型、系统等标签的识别;

2、借助调研问卷。

例如测试全平台,通过随机性选取3批及以上的用户(且样本量不低于千份)进行不同时间段推送,再将问卷回收进行数据处理分析;

3、借助专业的第三方分析工具

例如诸葛io,个像(个推新推出的用户画像工具)、神策等。相比较前两种方式,专业的分析工具通常能够基于海量的大数据对APP自有的数据进行补充,从而使标签更全面,构建的用户画像更精准,所以有很多运营者选择第三方分析工具。

 

了解用户,是APP进行精细化运营的基础。比如,了解用户特征就可以给不同的用户推荐不同的内容,可以找到与目标用户相似的用户群,利用相似用户群的特征对目标用户进行内容推荐等。

2.png

(用户标签对日常运营的影响)

 

其次,要善用运营手段

根据二八法则,80%的用户只会用到APP内约20%的功能点,而剩下80%的功能则需要运营同学通过运营手段,对用户强化认知,引导使用。例如保险类app,通常用户选购完保险,就不会再持续活跃,因为保险本身是当疾病发生了,才会生效的服务。所以,App平时要通过消息推送,给用户提供其可能感兴趣的内容,从而引导用户打开APP查看来提高活跃度,这已经成了APP运营日常中有效的手段,当然也是进行精细化运营非常重要的一个动作。

 

App消息推送首先要考虑用户分层,即推给谁?

精细化运营所指的“用户”,通常指的是“用户分层”。就是把用户按照不同维度进行拆分,给不同的用户展示有差异的文案落地页等,提高各层级的转化。同时切记用户属性是流动的,从新用户到留存用户,又可以细分为活跃用户到流失用户,根据付费标准,还可分为付费用户和非付费用户。

 

那么如何利用“用户分层”进行推送以提高APP活跃度呢 ?具体可以看下面的例子:

3.png

从打开率来看,“邀请送钱”的文案对于低、中质量用户效果最好;第二组“给予用户精神奖励”的文案对高质量用户效果最好。

通过数据对比,我们可以很直观的感受不同层级用户在接收内容推送后的不同表现。

 

当然,在实际进行消息推送的过程中还是会遇到一些问题:

1、推送需要筛选用户,却没有明确的用户标签与用户分组,每次导出要推送的用户,都需要从海量数据中检索;

2、推送可能出现延迟不能按照既定时间推送;

3、推送时间点人工不好掌握,尤其是一些特定的时间点,比如大多数人习惯在上班路上阅读新闻,却有有一群人习惯在早上6:00阅读新闻等;

4、很难精准匹配场景,比如当用户进入餐厅的时候,APP可以精准的推送相应优惠券信息等;

 

针对这几类问题,如果公司有自己的推送系统,也需要排优先级,再判断有无资源支持、开发周期等,耗时又耗力,所以借助第三方推送,就是大多公司的选择。

 

4.png

(个推的推送能力)

个推是不少开发者首选的合作伙伴,推送功能可参见上图。最近个推还上线了新功能,比如融合短信等多媒体的推送渠道让消息触达方式多样化,比如突破推送场景的局限,能够实现用户与智能家电、物联设备之间的信息连接。这些可以说是对消息推送领域新的探索,让推送更有价值。

 

第三,从流程切入精细化运营

流程就是用漏斗思维思考APP运营的操作步骤。从流程切入精细化运营,有三点很重要:

1、以数据为主导;

2、管理用户预期;

3、页面步骤管理;

【数据主导】

早期就有2A3R(海盗指标模型),即通过用户在使用产品的每一级页面的转化率,计算流失率,从而快速发现是哪一级页面出现了问题,并提出解决方案。

(海盗指标)

不过如今APP对数据的需求,已不仅仅满足于基础数据的使用与分析,对行业分析、卸载分析等都提出了更高的需求。而这方面能力需要App外数据支撑,所以不少APP运营者会选择和数据体量大,数据能力强的第三方合作。

 

6.jpg

7.png

(“个数”产品卸载分析)

如上图所示,“个数”(个推旗下数据统计产品)就提供了多种数据分析功能,其中卸载分析,深度分析了“卸载数”背后的原由,这对于日常运营是非常实用的。

 

【管理用户预期】

可以通过一个问题来阐述:用户看到了你的推送,他是如何理解的?

例如下面这个app 推送。

看到此条推送,我的理解是美团这家公司的运作是如何影响人们的消费习惯、工作状态以及资本市场的运作。

如果我打开看到的不是我理解的,而是一篇鸡汤文告诉大家努力拼搏等,那我的选择是快速关闭app,并很有可能因此而卸载它。

这是从触达层面,还有下面的每一级的页面,都需要思考几个点。

1、用户知道我要告诉他的信息是什么吗?

2、用户理解吗?

3、用户理解的是什么?

4、他预期的下一页应该是什么?

5、他为什么要看下一页?

 

【页面步骤管理】

页面能精简,就不要多。

每增加一个页面,尤其是后面,都意味的接近30%的流量流失。比如“会员续费服务流程”管理的案例:

通常续费会员服务的流程是:被告知需要续费—>查看续费落地页—>点击续费按钮—>显示续费用户详情—>下单支付—>支付成功。一共有6个步骤。

在续费落地页显示续费用户详情,把【显示续费用户详情】这个页面精简掉。仅仅是少了一个页面,就把续费率提升了10%之多。放在一个百万级用户体量中,提升10%的续费,转化提升效果是相当惊人的。

 

第四,要把精细化运营“系统化”

无论是进行数据管理还是做消息推送,当APP体量不大的时候人工可以解决,但是随着APP体量的不断增长,就需要有个完善的运营系统。

 

第1类:自己公司建立数据库和推送系统,根据数据库表中的字段建立用户标签,根据需求自己导出想要的用户群,自己筛选组合。

 

第2类:使用神策数据、个推、诸葛IO等提供基于大数据的开发者服务。

 

关于这两类如何选择,我觉得是需要站在公司目前发展阶段进行判断。

第1类,自建数据库和推送系统/用户画像分析平台等。其优势在于:

1、可以保证数据的安全性;

2、可以了解细分的用户偏好记录;

3、保证数据的完全归属性;

4、内部沟通效率及服务稳定性等有保障;

 

但也有不少劣势:

1、成本高,自建数据库首先需要保证人员配备齐全,至少要有数据开发、数据产品、数据分析师、懂sql的产品运营这四种必备角色才可以,其次需要用到云存储,类似腾讯云、阿里云、华为云等基本都是几十万到上百万的使用费用;

 

2、耗时久,比如自己写sql推送,需要反复验证sql的准确性及导出用户的准确性,可能是简单的推送,也至少需占用2人半天的时间,而且自建推送系统无集成用户标签,就每次都需要重新耦合;

 

3、功能不够完善,一般公司的推送平台不会做数据可视化功能,如有需要就要额外新增人力进行分析以推导下一步动作。如果能集访问漏斗、消息的触达到成单等各级数据展示,则可节省不少时间,但是对于开发能力要求很高。

所以,当公司处于创业期数据体量小,例如少于500万用户,我建议用第三方服务平台来满足目前的使用需求。当公司用户体量超过1000万,可以根据实际情况,把自主数据库与第三方平台综合使用,以更好的提高效率。

现有不少第三方服务商,都在根据APP运营者的需求进行新产品的研发,前文提到过的个推,近期针对APP精细化运营的需求,升级了原有的推送产品,并推出了“个像”(用户画像)和“个数”(数据统计分析)两个新产品,是通过打通消息推送、用户画像及应用统计的功能模块,建立了数据智能和场景驱动的精细化运营服务体系。大家如果有需求,不妨试一下。

 

最后总结:

1、张弛有度,不能一味的追求精细化运营,要考虑到目前产品周期,需要把大精力放在哪块业务上,同时也要考虑团队本身的支持能力。

 

2、有的放矢的精细化运营,例如,新增用户、活跃用户、沉默用户、流失用户,四个大类,我们需要把大精力放在新增、活跃上,其次是沉默,最后才是流失用户。

 

判断优先级,不是把所有的事情都做了,才叫精细化运营。

做高杠杆的事情,精细化运营不仅仅是为用户,也是为APP创造更多价值。

 

作者:周天将,授权青瓜传媒发布。

来源:周天将

]]>
互联网金融3大增长模型及落地原则! //www.f-o-p.com/95622.html Tue, 21 Aug 2018 09:07:43 +0000 //www.f-o-p.com/?p=95622

1.当我们在讨论用户行为时,我们在说什么

 

从基础出发,回归初始定义

很多日常脱口而出的词,其实我们并没有思考过它真实的含义。大多数争论和错误决策的起点,也在于定义的不清晰和不一致。

互金运营是离钱最近的一项工作,清晰的用户行为定义便显得尤为重要了。

用户行为

用户行为由最简单的五个元素构成,时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)。对用户行为进行分析,要将其定义为各种事件。比如用户搜索是一个事件,在什么时间、什么平台上、哪一个ID、做了搜索、搜索的内容是什么。这是一个完整的事件,也是对用户行为的一个定义。有了这样的事件以后,就可以把用户行为连起来观察。

用户行为分析

用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。

具体而言,用户行为分析是基于用户在互联网产品上的行为,以及行为背后的人发生的时间频次等维度,深度还原用户使用场景并且指导业务增长。

一个完整、多维、精确的用户画像=用户行为数据+用户属性数据。

消费者行为

消费者行为在狭义上讲:仅仅指消费者的购买行为以及对消费资料的实际消费。在广义上讲:消费者为索取,使用,处置消费物品所采取的各种行动以及先于且决定这些行动的决策过程,甚至是包括消费收入的取得等一系列复杂的过程。消费者行为是动态的,既涉及了感知、认知、行为以及环境因素的互动作用,也涉及了交易的过程。

消费者行为模型(AISAS)

 

消费者行为模型

随着互联网的兴起和发展,针对消费者进行研究的模型已经从最初的AIDMA模式(Attention 注意、Interest 兴趣、Desire 欲望、Memory 记忆、Action 行动),演化到了到后来的AISAS模式:

1、Attention——引起注意

2、Interest——引起兴趣

3、Search——进行搜索

4、Action——购买行动

5、Share——发起分享

基于基础定义的分析框架搭建

在线性方向上,从“注意”到“分享”的核心路径上存在着多个关键节点,而由于“说服心理学滑梯”效应的作用(下文将说明),导致从起始节点到最终节点的过程中,用户会因为各种原因出现流失,从而形成用户转化漏斗。

对互金运营来说,需要结合公司当前目标和自身KPI,抓住转化漏斗的关键触点,据此设计相应的运营策略。

对用户行为进行分析,要将其定义为各种事件,而将时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)聚合在一起,便构成了一个完整的用户任务。从任务的层次来看,从核心到外围,可以分为三档:核心任务、扩展任务、外延任务。

对互金运营来说,必须深入到本公司产品的体系中,了解用户操作的关键路径和主线流程,根据用户任务的重要程度,设计运营活动,这样能够最大程度上避免运营和产品惨烈撕X的情况出现。在往下看之前,你可以停下来想一想,对于投资用户来说,TA的核心任务、扩展任务、外延任务分别是什么?

由于不同用户在转化漏斗的阶段各有不同,其在本平台所处的生命周期发展阶段也就有了群体差异。引入期、成长期、成熟期、休眠期、流失期,针对不同发展阶段的用户,运营策略的差别往往十分巨大。

到这里,我们已经初步搭建起了用户增长策略的基本框架:

1、根据转化漏斗梳理操作流程,进而识别关键触点进行优化

2、根据任务层次梳理最小闭环,进而分层次、分阶段设计运营策略

3、根据用户生命周期进行用户分层,进而针对不同生命周期的用户实施差异化的运营手段

 

2、18字诀:为什么要分析用户行为

做画像

完整的互金用户画像=用户属性数据+用户行为数据+交易数据+风险收益数据。互联网公司擅长前2块,但往往偏重于一般的互联网用户分析,缺乏对金融和投资的理解;金融机构强于后2块,一般认为用户行为数据只是过程性信息而不屑收集,可能一款APP已经推出很多年都没有做过基本的埋点或转化率分析。

在整个用户画像的体系中,用户行为是串起用户和平台两端的其他3项数据的关键要素,值得深入探究和完善。

知偏好

通过对用户访问页面的类型、访问路径的深度,可以帮助识别用户对某些投资品种或运营活动的偏好程度,进而针对此类用户推送更多此类产品上架的信息,或是与相关产品有关的优惠券(加息券/抵扣券/满减券等)。平台再大一点,可以据此完善“千人千面”的前端架构设计。

此前GrowingIO、诸葛IO等用户行为分析机构,已经推出了此类产品,虽然在精度上还有待进一步加强,但毕竟是一个有益的尝试。从实际使用的反馈情况来看,偏好分析在投资理财类APP上的分析效果,会好于在借贷类产品上的应用。

控营收

从用户导入到用户流失,全链路跟进转化率和留存率提升。

根据公式:

用户生命周期价值(LTV)

=(某个客户每个月的投资频次*客单价*毛利率)*(1/月流失率)

由此可知,在客单价和毛利率水平不变的情况下,我们可以着手的点有2个:

  1. 提升投资频次:持续做好用户转化节点的运营策略优化,让用户在“注册-实名-绑卡-交易-复投”的转化过程中,有充分的动力持续向下一步跃迁,实现交易笔数和交易金额的提升,最终提升平台用户生命周期价值。
  2. 降低流失率:通过释放出各种任务引导持续提升等级,进而做好用户的忠诚度提升;通过刺激活跃和召回策略提升用户留存,最终降低平台用户流失率
 
做策略

做运营策略,并不是简单地抄一抄竞品、落实老板要求那么简单。或者换个角度说,如何更好地抄到竞品的精髓、把老板的要求落到可规划/可执行/可汇报的程度,都有赖于对用户行为数据的收集和分析。离开用户行为谈运营,无异于耍流氓。

搞复盘

根据用户行为数据复盘版本升级和运营活动的效果,并据此进行调整和优化。无论活动的目标是提升日活、提升GMV还是单品交易量,最终都要落实到用户在转化漏斗节点或用户任务上。

对于活动效果的检视,简单地看无非是“达成”或“未达成”,而对用户行为数据的分析,却能回答为什么、好在哪/不好在哪儿、下次如何和才能做得更好。

作比较

基于转化漏斗的各种转化率、基于海盗指标的拉新-促活-留存分析、基于用户任务体系的注册-投资-提现数据分析等,都能够帮助我们搭建一套对本平台指标体系搭建和竞品比较分析的框架,对于运营指标制订、资源申请和效果检视有显著的帮助。

 

3、如何搭建基于用户行为的增长体系

基于用户行为的增长体系建设,可分为前置条件、执行策略、通道搭建和落地配套原则4部分。下文将分别展开。

1.前置条件:用户数据准备

如上文所述,完整的互金用户画像体系,由如下这4部分数据构成:属性数据、行为数据、交易数据、风险收益数据。

互联网金融数据分析体系

  • 属性数据:用户作为自然人和社会人的最基本数据,也是其他三类数据的基础
  • 行为数据:串起用户和平台两端的其他各项数据的关键要素,一切运营策略的落脚点。以用户行为数据为基础,结合平台的标签体系,还可以得到衍生的用户转化数据和用户行为偏好数据,在此不详细展开
  • 交易数据:计算平台营收、ROI、LTV等经营指标的基础,也是用户价值的判断的重要标准
  • 风险收益数据:用户的投资属性数据,既是差异化运营的依据,也是平台落实风控合规要求的体现

属性数据举例

行为数据举例

基于以上数据,结合频率、时间维度、用户数等指标,就能得到更多指标数据,比如:

  • 时间周期(月)+投资次数=月活(MAU)
  • 最后一次回款日期+回款后最近一次投资日期=用户流失
  • 时间区间内投资金额/时间区间内投资用户数=人均投资金额

如果将用户投资行为,与最近一次交易时间、交易频率、单位时间内交易金额相结合(根据RFM模型),在计算和分析后对于用户价值判断、召回策略制定等方面将能够提供有力支撑。

  • R(Recency):用户投资的时间间隔
  • F(Frequency):用户在单位时间内投资的次数
  • M (Monetary):用户在时间内投资的金额

交易数据举例

风险收益数据举例

有关风险收益数据,稍微展开说一下:

对于大多数互金平台来说,产品的展示和推荐,首先还是基于营销的目的来做,不太考虑用户自身的风险承受力情况。甚至有些时候,在用户完成风险测评后,还会诱导用户购买超出自身风险承受力的产品,于是你就会看到下面这种画风:

XX金融在用户完成风险测评后给出的投资建议

(图片来自公众号@智能投顾联盟)

按照这两年监管发展的方向,“把合适的产品卖给合适的投资者”的适当性原则落地,将逐渐从持牌金融机构向互联网金融公司逐步扩散。基于用户风险承受力和收益目标来进行产品和运营策略设计,一方面能够提高合规水平和平台安全边际,另一方面,也是对用户投资需求和投资能力的更进一步把握。这部分内容之前的文章也有涉及,可点击《触动人心的运营策略——重新定义互联网金融用户 篇1》查看。

用户风险承受力与产品风险等级的匹配关系-基于用户风险承受力(5档分级)

用户风险承受力与用户投资目标的关系-基于用户风险承受力(3档分级)

2016年蚂蚁金服公布的《蚂蚁聚宝大众投资人大数据分析》中,透露出来的5项内容,分别都能对应到上文提到的四大类数据中:

注:

  1. 在实际搭建数据指标体系的过程中,指标会拆解得更加细化,这里不是写PRD,就不针对这四类数据对应的报表字段详细展开了
  2. 此处的“交易数据”,主要只用户发生投资行为后的持仓数据;而用户的首投、复投相关的时间、金额、产品数量等投资行为数据,包含在“行为数据”的类目下
 

2.用户增长模型搭建

基于用户行为的增长策略,依赖于三个基础模型的建立,它们分别是:转化漏斗模型、生命周期模型和任务分层模型。

其中:

  • 转化漏斗模型是在纵向上,对用户转化的节点进行分析;以此为基础,根据用户在不同转化节点的分布情况,对将用户在平台上所属的生命周期进行定义和划分
  • 任务分层模型是在横向上,对用户在平台上的各种行为进行拆解和分组,按照“核心任务-扩展任务-外延任务”的体系进行划分,以此为基础引导用户在不同层级的任务中迁移和成长
  • 最终,通过对用户转化率的持续优化、用户任务完成行为的持续引导,进而实现对平台各生命周期用户的差异化运营和服务,最终实现平台用户快速和持续的增长

模型Ⅰ-用户转化漏斗模型

关于转化漏斗模型,道是无在此前的文章中已经有过比较详细的描述,在此就不再展开。

转化漏斗模型(理财端)

基于以上模型,对于理财端用户的转化关键节点和对应的重要指标就可以比较轻松地掌握了。但在实际的应用中,这只是达到了60分的及格线而已。那么,该如何用更高阶的手段来使用转化漏斗模型呢?以下是2个可以参考的方向:

1、用户分支路径转化漏斗(以传播/邀请为例)

转化漏斗模型-分支路径转化

以转化漏斗模型的“传播”这个节点为核心,可以拆解出从“老用户看到界面邀请提示”到“新用户接受邀请并完成注册开户”,其间至少有7个转化节点。拆解到这个颗粒度,运营更多的工作开始浮现出来:

最终从结果来看,精细化的漏斗划分,一方面能帮助运营提升效率和投入产出比,另一方面,也有利于在活动过程中快速地定位和解决问题。活动结束后进行复盘时,做得好不好、下一次怎么才能做得更好,得出的结论才会更加靠谱。

2、方向二:平行转化漏斗

转化漏斗模型-平行转化

注:在上图中,对用户来说,投资、内容、每日加息、传播等业务,都被定义为“平行业务”。

如果按照不同的颗粒度、不同的业务条线来分拆,一个APP内其实可以拆解很多平行的转化漏斗,对运营来说,单纯为了拆而拆是没有意义的,我们需要根据当前运营重点和部门KPI梳理出需要重点关注的几个平行漏斗(同一时期内数量一般不超过3-4个,多了你也顾不过来)。一般来说,大概的方向有这么几个:

  • 抓用户主线转化流程:注册/绑卡/普通投资/定投
  • 抓用户活跃转化:推送/内容/每日加息/签到/老用户复投
  • 抓用户拉新转化:邀请好友/新用户首投

对同一时期内进入平台的用户,可以通过同期群分析等方式,分析这些用户在进入平台后的一段时间内(如果是公募基金,按照最短的申赎时间来看, 可以设定为一周),在各主要平行业务的使用情况和转化情况,并进一步了解用户在各业务上重合的程度。

基于以上分析,通过页面引导、活动激励等方式,结合平台的用户成长体系,促成用户在各平行业务之间的跃迁。

下面以与“投资”相关的几条平行业务进行举例说明:

示例:陆金所

以陆金所的印章体系为例,通过对用户成长路径的设计,引导用户在不同的业务之间跃迁,持续进行各类产品的交易、参加平台各类活动,最终提升用户的活跃度和留存率。

模型Ⅱ-用户生命周期模型

用户生命周期通常分为五个阶段,分别为:引入期、成长期、成熟期、休眠期、流失期。

通过各个时期特征的提炼,可将这五个时间分为三个运营区间:

  • 获客区——引入期,通常说的“拉客”,主要运营手段为拉新,主要考核指标为留存率;
  • 升值区——成长期+成熟期,通常说的“接客”,主要运营主段为激活,主要考核指标为增长率和转化率;
  • 留存区——休眠期+流失期,通常说的“留客”,主要运营手段为留存,主要考核指标为为留存率和召回率。

用户生命周期模型

新手首先碰到的问题,往往是不知道按照什么标准来划分生命周期节点。其实在实际操作的过程中,你并不需要真的做出一个用户生命周期分布图,然后据此操作。实际上,用户处于周期的哪个阶段,是由其行为决定的。所以,运营的抓手,也是落在用户的行为上。

比如,你发现近期平台上产品的申购金额几乎没有什么增长,甚至还有所下降。于是,你找BI同学拉数据,发现近1个月平台上已注册&未交易用户占比有上升的趋势,而且用户复投率也有所下降。结合上文的用户转化漏斗模型,你可以得出初步结论:

  • 注册用户的交易转化率偏低,一方面可以内部排查,看看在系统层面,交易流程是否有问题;另一方面,可以通过短信/PUSH/站内信/APP首页弹窗等方式,给用户推送新手大礼包(新手红包+体验金+高收益新手标),引导用户完成首投转化。在此,实际上就是针对这一批引入期用户进行了交易转化率提升的操作。
  • 用户复投率下降,原因可能比较复杂和多样,可以多观察几天,并跟历史基线数据做比较。有时很可能正是用户还没到发薪日没钱投资,或是前一阵做过大促,大批用户买了期限较长的产品尚未回款,所以没有新的资金进行复投。

当用户处于不同发展阶段时,用户价值会产生相应的变化,因此,也需要针对不同阶段来设计对应的运营目标和策略。相关内容道是无已经在此前的文章中有过较为详细的描述,在此不再展开。

模型Ⅲ-用户任务分层模型

互金用户任务分层体系(理财端)

对于理财端的用户来说,在一个平台上所有的行为,都可以放到“核心任务-扩展任务-外延任务”的框架中进行考核和分析,这就是道是无在本部分要介绍的“用户任务分层模型”。

仔细观察后,你会发现一个很有意思的现象,“模型Ⅰ-用户转化漏斗模型”其实是以平台为中心的用户转化视角,而“模型Ⅲ-用户任务分层模型”则是以用户为中心的需求满足视角。两个模型有同样的转化节点,但模型Ⅰ是扁平的,而模型Ⅲ却是带权重的。

1、任务分层结构:

注:把“成为平台投资者”放在扩展任务区域的原因——对用户来说,“成为平台投资者”这个任务,其实是“赚钱”任务的前置条件,确实很重要,但并不是用户首先关心的问题,所以就把该任务的权重将至扩展任务。

2、用户任务分层模型中的市场机会:

  • 核心任务:提供亿级用户规模的机会。满足互金核心任务需求的,从前是金融体系的银行、券商、保险和基金等金融机构,后来是推出了余额宝的蚂蚁金服。你会发现这一类公司做的就是面向海量用户提供“存钱-赚钱-取钱”的基础服务,它们在的用户运营上谈不上有多大特色,但选对了时间和任务模式,成功的概率最高。

这类公司应对洗牌风险的能力为“强”

  • 扩展任务:提供千万级用户规模的机会。满足扩展任务需求的,往往在效率上有表达提升。它包括两类公司:一类是腾讯、京东这样的互联网巨头,从成为平台用户的扩展任务切入(即俗称的“用户导入”),本质上做的是流量生意;另一类是平安、玖富、拍拍贷这样的互金玩家,模式有:①平安陆金所:通过强大的金融产品整合和供应能力做好“投资-复投”任务②玖富/悟空理财和拍拍贷:抓住P2P的时间窗口,做好“获得收益-增加收益”任务,以及简化和降低准入门槛,做好“成为平台投资者”任务

这类公司应对洗牌风险的能力为“中”

  • 外延任务:提供百万级用户规模的机会。以满足外延任务需求为特色的,多数是互联网系的头部互金公司。它们在核心任务上找不到突破点,于是立足扩展任务,发力外延任务,在获客手段、运营手段、补贴力度、差异化资产获取和包装上都做得最为有声有色。

这类公司应对洗牌风险的能力为“弱”

PS:做外延业务如果用力过猛,走上邪路,极致就是传销和庞氏骗局了。不少人痴迷所谓的用户裂变方法,如果脱离了用户的核心任务,那就肯定不是健康的用户增长模式——既无法带来合法的收入,规模增长也无法持续。

3、任务分层关系:

  • 核心任务:用户首先关心的是赚钱,赚钱的主线流程是“投入本金(入金)→获得收益(增值)→获利了结(出金)”。平台是否安全、平台收益是否有吸引力、要用钱时是否能够及时取出、主线操作流程是否方便,这是用户在核心任务区域最关心的几个问题,它们直接决定了“扩展任务”和“外延任务”是否存在
  • 扩展任务:扩展任务中,“复投”、“增加收益”、“提前获利了结”这3个一级任务,分别对应核心任务中“投入本金”、“获得收益”、“获利了结”这3个二级任务,前者是后者的进一步扩展和优化
  • 外延任务:外延任务附属于核心任务和扩展任务,当运营活动主要落在外延任务区域时,需求基本在运营经理层面就可以搞定了。如果运营活动落到扩展任务或核心任务区域,往往就需要产品经理比较深度的配合了。尤其是落到核心任务区域的运营活动(体验金、加收益等),往往要横向统筹多个部门,最容易踩到坑里去的往往也是这类活动。

4、任务分层角色统筹:

  • 核心任务是产品经理主要关心的领域,平时说的APP核心功能设计、用户体验设计基本都落在这个区域
  • 外延任务往往是运营经理发力的着眼点,各种拉新、促活、留存的运营活动,都落在这个区域
  • 扩展任务区域则是产品和运营的交界地带,对产品经理来说,扩展任务是用户体验持续优化的方向,对运营经理来说,扩展任务中的各项子任务,都是运营活动很好的载体

如果你仔细观察就会发现,一个高阶的产品经理或运营经理,常常是能够按照“核心任务→扩展任务→外延任务”的方向来思考,同时又能够充分立足各自业务目标和KPI,进而设计方案并安排优先级的人。

反过来看,有时运营同学向产品同学提出一个运营需求时,会很诧异:“咦,为什么产品同学当场炸毛了?”其实,如果你了解用户任务分层模型就会知道,这次你提的这个需求,大概率是让产品同学感觉用户的核心任务流程受到干扰了。基于对用户任务分层的洞察,运营对产品中各种功能的权重才能有更合理的把握,与产品和开发沟通时,才能有共同的讨论基础。

下面以京东金融APP的“任务中心”为例,对相关任务进行拆解和分析:

京东金融任务体系拆解

通过上图可以看出:

  • 互联网金融的最关键的点是交易,所以叠加在核心任务和扩展任务上的运营激励往往比较大
  • 邀请好友使用京东金融APP,能够间接带来交易量的提升,所以给予了中等程度的激励
  • 每日玩金币游戏,由于是一个单纯的促进用户活跃的活动,与核心任务距离比较远,对于用户核心需求的满足程度也较低,所以给予了比较弱的运营激励

不过需要注意的是,不同类型的公司,在处于不同发展阶段时,业务目标会有不同的侧重点,所以在运营活动方案和配套激励措施的设计上,会有各自个性化的地方,不能直接套用模型,还需要具体问题具体分析。

3.用户成长路径建设

互金用户成长框架

对于互金业产品来说,用户的转化和成长是在两个层面上实现的:

  • 金融层面

用户投资金额、投资产品复杂度的提升,背后代表的是用户风险承受力和收益目标的提升

  • 互联网层面

用户在平台内成熟度的提升,它表现为在基于主线转化漏斗的成长体系上,持续不断地向漏斗的下一个环节迁移和成长

从金融层面看,用户在财务生命周期中所处的家庭发展阶段,是影响用户在金融层面成长的背景性因素;同时,用户风险承受力、收益目标、收入水平、投资经验等都是影响用户在金融层面成长的关键性因素。不过,由于财务生命周期涉及到大量个性化的线下数据,而且与投资、保障和资产配置的关联度太高,在本文中就不再详述,将来有机会另开文章讨论。

从互联网层面看,用户在平台上发展生命周期所处的节点,是影响用户在互联网层面成长的背景性因素;同时,用户在主线转化漏斗所处的节点、活跃情况、留存情况等都是影响用户在互联网层面成长的关键性因素。

总体来看,用户的成长过程是在金融和互联网这两个层面上交织进行的,最终都体现为用户在平台上各种各样的投资行为。

成长模式Ⅰ-用户在金融层面的成长

理财端用户投资成长体系

此前,蚂蚁财富(原“蚂蚁聚宝”)曾经对理财用户做了一个很形象的分层,从最初级的银行存款(幼儿园),到最高级的资产配置(六年级)分为7个进阶。按照这个标准来看,会发现大多数基金公司的现状是给一年级的小朋友,上三年级、四年级的课;国内一众做智能投顾的公司,在给幼儿园的小朋友,上六年级的课——这些情况,其实都是忽略了互金用户的分层以及用户成长的过程,体现到用户数和管理费收入上,回报的效果自然不会太好。

对互金平台来说,需要根据自身产品资源、用户分层,结合相应的运营策略,帮助和引导用户实现成长和进步。这一点上,我一直觉得京东金融的“小白基金”做得不错(没看到交易数据,欢迎京东的童鞋补充^_^):

京东金融-小白基金

用户点击进入“小白基金”,从左到右一次可以看到“天天赚”、“月月赚”、“高手专区”,分别对应货币型基金、债券型基金和混合型/股票型基金(原先还有基于短期理财基金的“周周赚”),帮助用户勾勒出“一年级(货基)→二年级(债基)→四年级(混合型基金)”的成长路径,用户还可以通过学习基金产品知识,获得从3%到4%不等的收益奖励。

对小白用户来说,货基和债基在能够承担的风险范围之内,又能够够获得额外的收益补贴,自然会有动力参与到投资和成长的过程中来。

其实对于多数理财类的APP来说,如果做好如下2点,这篇文章也就算没白看了:

  • 划分用户成长进阶,提供有梯度的产品和服务
  • 首先服务好低年级“小朋友”,在用户体验和运营策略上做出倾斜,辅以投资者引导和教育

成长模式Ⅱ-用户在互联网层面的成长

理财端用户交易行为成长体系

从理财端用户交易行为成长体系的构成来看,主要包括如下几个要素:

  • 垂直方向上,基于用户转化漏斗模型,设定转化路径和转化目标,从“完成注册”到“完成新的投资”都包括在内
  • 水平方向上,在转化漏斗的主要节点上,促成用户从上一个节点向下一个节点转化和成长,从“已下载未注册”到“汇款后N天未投&账户内无余额”,都有各自的转化目标
  • 在配套条件上,针对相应生命周期内用户的特点,设定好“触发转化条件(如下载后的M天内)-触发转化方法(如首页蒙层)-触发转化激励(如阶梯现金券)”这整套运营手段,以保证用户转化和成长目标的落地
  • 重点强调:在促成用户“完成首投”、沉默/流失用户“完成新的投资” 的转化节点上,可以适当引入人工电话回访的方式,主体内容是“平台信心建设+未转化原因询问和解答+优惠激励”。只要成本可控,人工的方式会让用户感觉比较有温度,转化效果一般也还不错

下方,是陆金所针对“N天未投资&账户内有余额”的用户,推出的“1月回归礼”活动,主要目的是通过下发投资券短信的方式,促成休眠用户“完成新的投资”。

陆X所-1月回归礼

通过上图可以看出:

  • 用户触达的第一步就存在风险,下发的短信可能被用户手机上的安全软件禁用,导致用户看不到这条消息。相对比较保险的做法,可以采用“短信+邮件/推送/电话”的方式,确保用户肯定可以看到
  • 短信文案的表述容易让人误以为是诈骗短信,用户明明什么都没做,为什么就凭空“获得抽奖资格”?
  • 在可以做到针对休眠用户精准发送触达短信的基础上,最好的方式是确保所有收到短信的用户都能中奖,否则会比较影响用户感受。这一类活动的指导思想,应该是【确定能得到,不确定得到多少】:确定得到,能够确保用户有参与的动力;不确定得到多少,能够提供用户“赌一把”的乐趣。不过这也是大公司的苦恼,包括很多银行在内,由于用户规模大,为了控制营销成本,不得不祭出“数量有限、先到先得”这个法宝
  • 在适用的产品上,尽量不要太限制。用户之所以会进入休眠状态,肯定存在某种原因的,所以给这些用户的激励一定要更诱人,最好能给到无门槛的全场通用券,或至少放到明星产品或是一些新上架产品上

简言之,用户在互联网层面的转化和成长,其实也是一个比较复杂的过程,它既包括用户在主线流程上的转化,也包括用户在支线流程的转化。在转化的每一个节点上,一定要考虑清楚用户的利益点和风险点/困难点在哪里,并提前做好产品和运营手段上的准备,最终促成用户的持续转化和成长。

本部分的最后,再上一个案例——桔子理财新手任务成长任务。正如上文所说,用户的成长过程,是在金融和互联网这两个层面上交织进行的,两者相互依赖、相互促进。

桔子理财新手任务成长任务拆解

通过上图可以看出:

  • 从互联网层面的成长来看,桔子理财新手任务是在重点引导用户完成“渠道导入→注册→首投→传播”的主线流程转化。完成这样一个深度的操作过程后,用户对平台肯定是比较了解和信任的了(投入金钱&投入人脉关系),这样用户离开平台的成本就变得更高了
  • 从金融层面的成长来看,周周升属于短期高收益产品(7天后可赎回,年化最高8.39%),爱定存的期限从1个月(年化收益率5.5%)到12个月(年化收益率8.29%)不等,而且用户为了追求高收益,往往会倾向于投资期限较长的产品。

买入定期产品后,只有VIP用户有提前赎回特权,普通用户无法提前赎回(成为VIP用户需要在平台上的投资金额达到一定规模),这样也进一步提升了用户在平台上的留存率

  • 从激励的倾向性上看,可以看出桔子理财和京东金融具有比较明显的不同。在上例“京东金融任务体系拆解”中,对于“邀请好友使用京东金融APP”给予的是50个金币的中等程度激励,而在桔子理财这里,是给予400个桔子的最高强度激励。京东金融由于背靠京东商城,用户体量大,业务复杂度高,所以重在引导用户在各业务体系内的转化和活跃;桔子理财属于创业型平台,用户渗透率相对较低,所以重在扩大用户规模,更多地圈进用户后,再谋求转化

我们平时在做竞品研究和运营手段借鉴时,这样的背景性因素往往会被忽视,而直接照搬别人方法的结果,往往就是“七分看运气,三分看财力”,这种情况应该尽量避免。

综上,在不断完成任务、获得成长的过程中,用户获得了更多的权益和心理满足,平台也获得了用户的活跃和忠诚,在这里可以看到,一个好的运营策略设计,能够让用户和平台都获得双赢的。而用户成长体系的搭建,又穿插着“利益”、“荣誉”、“情感”、“安全”的种种套路,对人性弱点的窥探,在这里体现的淋漓尽致。

Part4. 落地配套原则

在充分把握用户行为的基础上,为了最大限度地发挥用户增长模型的效能,我们还需要有配套的指导原则和措施:

  • 一切从实际出发。任何方法或模型,都要基于公司的行业属性和当前发展阶段来使用,这是一条基本原则。彼之美味,吾之砒霜,尤其不能简单粗暴地照搬友商的方法。最典型的例子,是上文提到的京东金融和桔子理财对老拉新的激励程度差异,体现的正是这条原则
  • 使用PCDA来验证和拓展模型的有效性。通过计划阶段(Plan)- 执行阶段(Do)-检查阶段(Check)-行动阶段(Action)的不断循环,结合运营目标和数据复盘,配合做好ABtesting,形成适合本平台的有效运营手段体系
  • 指标拆解和运营活动设计的精细化。明确自己的关键目标,然后通过MECE(Mutually Exclusive Collectively Exhaustive,相互独立,完全穷尽)的方式,不断进行目标的分解;最后,拆到最小的颗粒度上,据此设计运营方案。比如上文提到的“用户分支路径转化漏斗(以传播/邀请为例)”,道是无强调“在老用户界面显化利己因素,在被邀请用户界面显化利他因素,最终将传播/邀请的转化率最大化”,在下方的拿铁智投活动页中就体现得很完整:对老用户,凸显的是“每位好友送您50元”;对新用户,凸显的是“最高加送鼓励金5%”

拿铁智投-老拉新案例

  • 小米加步枪有时候比长枪大炮更有效。这句话完整地说,应该是“(今天你拿在手里的)小米加步枪,有时候比(未来某一天可能拥有的)长枪大炮更有效”。如果平台成立时间不长,数据体系也不完备,划不出完整的用户生命周期,这时候又想快速提升交易转化率,就可以直接找数据同学,拉一下近一个月“已开户未交易”、“已首投未复投”的用户数据,给新用户发一批新手大礼包短信推送并跟进电话、给首投用户发一批(高收益新手标+定向现金券),直接看效果。草莽阶段,百废待兴,这时候简单粗暴比按部就班更有效
  • 最后,记得算清楚ROI——行业低潮期,钱还是得用在刀刃上

4、底层框架和指导思想

行为至此,全篇也将接近尾声了。

道是无整理了基于用户行为的增长逻辑背后,那一整套底层的思考框架。因为埃隆·马斯克Elon Musk)的缘故,这两年“第一性原理”很火,我也尝试从互金用户最底层的需求和行为模式出发,将全套的逻辑做一下简要的推演,参见下图:

基于用户行为增长逻辑的底层框架

用户底层需求

用户参与金融业务最底层的需求,直接目标是获得收益,而最终是为了消费。按照《金融学》的表述,“金融学的一个基本信条是:金融体系的终极功能在于满足人们的消费偏好,包括诸如食物、衣服和住所等全部基本生活必需品”。换成大白话,就是赚钱是为了更好地花钱。在这一点上,阿里、京东这样的平台,算是比较完美地实现了用户的“投资-消费”闭环。

用户获得收益的过程,就是将投入资金到理财平台,在达成收益目标后,转出资金的过程。用户在任何理财平台的操作,最终都可以被抽象到“投入资金→获得收益→转出资金”这一行为体系中。

经济学三公理

在目前所有的学科当中,道是无认为经济学是解释用户需求和行为最合理的框架与工具。而根据张五常先生的观点,经济科学最终可以归纳为三个最基本的公理:需求定律、成本概念和竞争含义。这三点,其实也是一切运营策略的起点。

  • 需求定律:核心思想是“价格对供求的作用是确定性的”,在这里,“价格”可以是是理财平台给出的金融产品收益率,也可以是互联网的用户体验度、运营提供的补贴和激励。用户的需求会被导向哪一家平台、到了某一个平台后是留还是走,都受到平台提供的“价格”影响
  • 成本:对用户来说,从下载APP到投资、分享,整个转化漏斗的每一个节点上,无论是选择YES还是NO,都意味着成本的付出。在互金运营中,需要重点考虑的是这四类成本:沉没成本、机会成本、边际成本和会计成本,它们是用户作出行为决策的基础。实际上,很多平台的运营策略,就是通过不断增加用户的沉没成本(金钱、时间和情感),持续增加用户心理账户的支出,让用户因为离开的成本太高而留下来
  • 竞争:根据百度百科的定义,竞争( competition)是个体或群体间力图胜过或压倒对方的心理需要和行为活动。即每个参与者不惜牺牲他人利益,最大限度地获得个人利益的行为,目的在于追求富有吸引力的目标,竞争是个人或群体的各方力求胜过对方的对抗性行为。同一个运营活动(比如请好友帮助砍价、邀请好友获返利、给宝宝投票等),如果引入排名机制,往往会较大幅度地提升用户参与意愿和持续参与的时间
说服心理学滑梯模型

说服心理学滑梯

根据说服心理学理论,对用户的说服和行为的促成,需要考虑如下四个要素:

  • 首先是重力,这代表用户做一件事的初始动机。对互金用户来说,就是通过投资赚取收益
  • 角度,它是运营从用户身上挖掘出来的动机和需求,依托于重力而存在。比如用户的初始动机是投资赚钱,运营通过设计各种活动的方式,设计出“邀请好友可以加收益”、“学习理财知识送红包”等活动,培养用户邀请好友加入平台的动机和学习理财知识的动机
  • 推动,是运营为用户提供的激励,目的是为了引导用户完成特定的行为,促成用户的持续转化和成长
  • 摩擦,是用户在平台上完成特定行为的阻力:有时是客观层面的,比如APP不稳定,或是绑卡成功率低,或平台产品收益率水平偏低;有时是主观层面的,比如平台的UI主色调是绿色(XX投资最初几个版本就是这样),让投资用户心里觉得不太舒适,或是平台名字起得拗口等等,原因不一而足

在说服心理学滑梯模型中,代表用户初始动机的“重力”与经济学三公理的“需求”存在着对应关系,代表用户完成特定行为阻力的“摩擦”,与经济学三公理的“成本”也是相对应的,它们是经济学公理在运营策略上的体现。

福格行为模型(BJ Fogg’s behavior model)

福格行为模型

福格行为模型(BJ Fogg’s behavior model)认为,要促成用户某个行为发生,需要同时具备以下三个要素:

  • 动机,根据百度百科的定义,动机是由一种目标或对象所引导、激发和维持的个体活动的内在心理过程或内部动力,是人类大部分行为的基础。在组织行为学中,动机主要是指激发人的行为的心理过程。通过激发和鼓励,使人们产生一种内在驱动力,使之朝着所期望的目标前进的过程。在这里可以很清晰的看到,用户的动机是行为发生的内驱力,是一种用户自主性较高的心理机制,而且往往要通过“激发和鼓励”才发生作用。在互金业务里,用户最底层的动机就是获得收益,而各平台努力的方向,是让用户来到自己的平台投资,持续留存,并带入更多的用户过来投资
  • 能力,是用户完成某种特定操作的的素质,或者说完成某种行为的水平高低。在互金业务中,用户的行为能力一般体现为是否拥有一台手机、是否有几秒钟的操作时间或是否有一定的投资资金,门槛非常低
  • 触发器,在这里指的是运营为用户提供的激励,用以促成用户完成某种行为

在福格行为模型中,“动机”与说服心理学滑梯模型的“重力”(初始动机)和“角度”(从用户身上挖掘出来的动机)存在对应关系,“能力” 与“摩擦”(用户在平台上完成特定行为的阻力)对应,“触发器”与“推动”(运营为用户提供的激励)相对应——这意味着说服心理学滑梯的每一个要素,最终都体现为福格行为模型中相应的操作要点。而福格行为模型,又是一切运营策略的基础框架。

以上文陆X所的1月回归礼为例,我们来看一下福格行为模型的实际应用:

  • 动机:用户的初始动机是通过投资赚取收益,运营挖掘出来的动机,是赚取平台提供的额外补贴奖励
  • 能力:用户只需拥有一台智能手机即可,几乎所有的互联网用户都能满足这一条件
  • 触发器:在这里陆X所运营为用户提供的激励是获得抽奖机会,用户有机会得到从5元到50元不等的投资券

当用户按照运营设定的路径完成特定的行为后,用户的转化和成长之路,又向前迈出了新的一步。

最后,道是无用三句话来概括《触动人心的运营策略(1-3)》这三篇文章的核心指导思想:

以用户数据为基础

以用户成长为主轴

以用户交易为导向

以上,即互金用户增长的不二法门。

全文关键要点归纳如下:

  • 互联网金融数据分析体系的搭建和不断完善,是增长模型持续发挥作用的基础
  • 用户转化模型的使用方法和配套数据指标,在本系列上一篇文章中已经有过介绍。在此基础上,还有更为进阶和精细化的玩法:用户分支路径转化漏斗、平行转化漏斗
  • 用户生命周期模型,重点并不在于多么精确地划分周期节点,而是根据周期内相应用户的行为特征和数据,提供对应的运营策略,从头到尾做好“拉客-接客-留客”的工作
  • 用户任务分层模型,能够帮助大家梳理互金业务的用户任务体系:核心任务→扩展任务→外延任务。高阶的产品和运营,往往更加认同“核心任务>扩展任务>外延任务”的重要性设定,并以此为基础来进行产品设计或运营活动设计,同时,这也是各方顺利沟通的基本前提
  • 在用户的转化和成长路径建设上,可以从金融和互联网两个层面切入。它们分别受到用户的财务生命周期和在平台生命周期影响,各有特点,又相互交织
  • 最后,本篇通过打通互金用户的底层需求、经济学三个公理、说服心理学滑梯模型和福格行为模型,挖掘出各种互金用户增长模型背后最底层的逻辑框架

 

作者:张德春,授权青瓜传媒发布。

来源:道是无(ID:daoshiwubiji)

]]>
关于数据驱动增长的4个问题,你一定要知道! //www.f-o-p.com/74371.html //www.f-o-p.com/74371.html#respond Wed, 07 Mar 2018 07:42:58 +0000 //www.f-o-p.com/?p=74371
5 (25)

数据驱动增长”在2015年开始在国内被人提及,作为“Growth Hacking”的一部分,伴随Growth Hacking概念的流行而逐渐被互联网行业的产品、运营数据分析人员所接受。

图1 .增长黑客的搜索指数(图片来源:百度指数)

然而大多数朋友只是听说过“数据驱动增长”这个名词,对其方法还缺乏系统的认识。究其原因,首先是各公司普遍缺乏优秀的数据分析工具,其次是简短有效的课程或文章太少。作者本人通过在工作中的实践使用,总结了一些通用的方法、流程,虽不敢称完善,但足够让读者朋友从0做到“基本学会”。

对于还没深入接触过“数据驱动增长”的朋友肯定会产生这样的疑问:这个东西是什么?有什么用?怎么去用?本文第1节“基本认识”中通过4个小节解答“为什么”、“是什么”和“有什么用”的问题。

第2、3、4节解答“怎么用”的问题。其中第2节介绍3个使用实例,这样可以让读者朋友更容易理解后面的方法体系。第3节介绍第2节中的例子所体现的方法。第4节总结搭建数据驱动增长模型的一般化步骤。全文结构如图2。

图2.全文结构

学习“数据驱动增长”首先是要有个正确的宏观认识,而后基于宏观的知识框架学习具体的用法。如果读者朋友对增长已经有了系统化的认识,可以跳过第一节介绍宏观认识的部分。

“数据驱动增长”听起来很高深,其实最核心的内容并不多,之所以很多名家高手通过整整一本书去讲这个技能,恐怕是因为出版社不允许他们的书只写10-20页。作者确信:读完本文,你将对“数据驱动增长”的核心理念和技巧拥有全面系统的认识,并且能够在工作中开始尝试使用这个技能。

1、基本认识

正确认识增长

“增长”是什么?通常认为增长是提升DAU、PV、UV,最好的办法就是多引流量。然而事实是:只有“拉新”,没有“留存”的DAU/PV/UV提升不是增长!

这就好比“竹篮子打水”,看似篮子里面的水在变多,那是因为把水龙头开得大。但问题是:流量要花钱买,用户还没点击广告、没购买就走了,连获客成本都收不回来,就时更别提口碑效应了。而且,一旦你的产品把用户“恶心”过一次,不出意外的话用户是不会再回来的,忽视留存可以说是透支未来的做法!图3所示的就是“只拉新不留存”的作死姿势。

图3.“只拉新不留存”的作死姿势

PS:有些创业者就是用图3中这种办法去骗投资的,俗称“To VC模式”。

重构你的“数据意识”

那增长该怎么定义?个人认为:DAU、UV这样的指标属于“虚荣指标”,关注这些指标很容易误入歧途。目前对“增长”最好的解释就是“AARRR”模型,在有的地方也被称为“海盗模型”,如图4。

图4. AARRR模型

①获取。就是从搜索引擎应用市场渠道,获得产品的“访问新用户”。提升的目标要是:渠道的质量、数量、新用户比例等。

②激活。完成“体验完整产品”所需的所有前置操作,如注册、购买等,由“访问新用户”变成“使用用户”。

③留存。用户认同产品带给他的价值,持续使用产品。由“使用用户”变成“活跃用户”。

④变现。通过点击广告、流量售卖、服务付费等方式回收获客成本并盈利。提升的目标要是:付费转化率、客单价等。

⑤推荐。用户对产品的价值非常满意,并推荐他人使用。由“活跃用户”转变为“粉丝用户”。

这5个核心指标共同构成了增长,5个指标在产品生命周期的不同阶段中有所侧重,探索期更关注“激活”和“留存”,增长期更关注“获取”和“推荐”,稳定期更关注“变现”。如图5。

图5.产品生命周期各阶段的增长侧重

无论你是产品经理还是产品运营,你做的每一件事的最终目的一定都是为了增长。因此,每一件事情一定是为了提升这5个指标中的一个或多个,对应的数据分析也都应围绕着这5个方面展开。

数据能为增长带来什么

转化漏斗”和“留存图(表)”是分析增长数据不可或缺的2个基础工具,可以应用到AARRR模型的每个阶段。具体来说,可以用“转化漏斗”来衡量渠道质量、激活转化率、付费转化率、推荐转化率,可以用“留存图(表)”来衡量日/周/月的留存率。如图6。

这2个基本工具再结合下个小节提到的“用户分群”、“用户细查”等工具,可以让我们通过数据发现AARRR中每一步的提升空间和提升方法,这就是数据为增长带来的价值。

图6.数据工具在AARRR模型中的使用

数据驱动增长需要什么样的工具

工欲善其事必先利其器,数据驱动增长需要有具备特定功能的工具。从上一小节可以看出,最常用到的数据工具是以下5个:

①转化漏斗。如图7。用于量化用户在某个功能的一组操作行为中,各个步骤的转化/流失情况,以及产品内各个功能的使用率。

②留存图(表)。如图8。用于分析7日留存、1月后周留存、1年后月留存等数据,可以通过它寻找留存率的提升空间、提升方法,检验产品优化方向的正确性等等。

③用户分群。通过用户行为筛选用户群体,达到标记重要功能的作用。

④用户细查。可以查看某个用户的所有点击和页面浏览行为,是进行定性研究的利器。

⑤来源管理。用于标记用户来源,进而可以分析各渠道的转化率、留存率、新用户占比等流量质量指标。

图7 .转化漏斗示意(图片来源:GrowingIO)

图8 .留存图示意(图片来源:GrowingIO)

其中前三个功能尤其重要,缺一不可。图9是GrowingIO、诸葛IO、神策数据的功能菜单,可以看到,每个工具都具备这3个核心功能。

图9.GrowingIO、诸葛IO、神策数据的主面板

是否能够熟练使用“转化漏斗”、“留存图(表)”、“用户分群”这3个功能,是衡量一个产品人员是否具备“数据驱动增长”基本技能的重要标准。如果手头没有这种工具的话,也可以采用其他替代方案,比如请技术同学导数据或自己写脚本,但是效率会低很多。

2.实战案例

本节介绍3个使用案例。有了案例作为铺垫,可以帮助读者朋友更好地理解后面介绍的技巧、流程。本节所采用的案例分别摘选自GrowingIO公开课第2、4、14课。(本来是打算使用作者工作背景作为案例,但是考虑到商业保密的问题,最终决定用社会上公开的例子)

案例1

以某音乐APP为例,如图10左侧,在一段时间内点击“喜欢”大于3次的这部分用户的留存如红色线所示,蓝色线表示总体用户。可以看到,点击“喜欢”大于3次的用户留存率都高于总体用户。

再对比点击“喜欢”大于3次与小于3次的用户留存之间留存的差异?如图10右侧,最下面绿色线是点击“喜欢”小于3次的用户的留存曲线。可以明显地看出来:点击“喜欢”小于3次的人留存率比总体用户的还要低。

留存分析的作用就是指导如何优化产品,既然通过数据我发现了点击“喜欢”大于3就会留存率高,那么我们可以得到一个假设:如果能让用户更早地去点击“喜欢”,那么留存下来的客户会更多。

类似地,如果用户加入了一个兴趣社区,也可以看到他们的留存率相对整体客户来说是有一个提升的。更进一步,如果用户既点击“喜欢”大于3次以上,又加入兴趣社区,其留存率又高于只点击“喜欢”大于3次或者只加入兴趣社区。

图10.某音乐APP留存图

案例2

以某在线旅行网站为例,需要提升支付页的转化率,于是选取了一个到达支付页面但未完成支付的用户,借助“用户细查”功能来详细观察这位用户在支付页的行为轨迹。

如下图11,最左边的是该用户第一次进入该平台时的动作,该客户打开页面,浏览了旅游商品页,点击了购买,并提交支付页面,但是却直接退出了,没有确认支付。第二次,这个用户又重新进来,浏览旅游商品,选择了另外一个商品,提交支付,然后又是在支付页面退出了。第三次这个用户又进来,浏览了另外一个旅游商品,提交支付,最终还是没有完成支付,这次用户完全退出APP。

通过“用户细查”发现:用户每次都在支付页面退出,然后重新选择新的旅游商品。结合对业务的理解,建立如下假设:客户选择旅游商品是一个反复的过程,包括旅游时间、酒店套房、交通安排、参观景点等等。客户在提交订单后容易再次更改自己的选择,如果订单的支付页面无法修改订单内容或者返回上一页修改订单,用户最终会放弃支付或者直接退出,导致支付转化率过低。

可以根据上述行为,建立“支付页缺乏产品比较功能”的假设,然后去对这个假设证真或证伪。具体来说,可以通过种子用户访谈去验证,如果开发代价很小,也可以通过线上A/B测来验证。

图11 .使用“用户细查”发现设计缺陷

案例3

对某个功能的转化漏斗,可以从地区维度(分析各地区的转化情况)、平台维度(iOS,Android,web等)、行为维度(领取优惠券,关注了1个商品等)等维度分析,如图12。通过对比各个维度转化率的差异,就可以找到很多的优化空间。于是可以采取类似这样的措施:增加某些地区或渠道的投放,增加某些功能的曝光,向更多的人发放优惠券。

图12.用维度对比发掘转化提升空间

3.技巧介绍

技巧1:寻找魔法数字

例1中的方法是典型的“魔法数字”,首先来明确魔法数字的概念。

当新用户在一定时间里、以某种频率使用了某个功能时,会有更大的可能留下来,成为忠诚用户。这些能够大大提高用户留存的神奇数字,就叫做魔法数字(Magic Number)。

该方法起源于硅谷的互联网公司,比如:Twitter发现新用户在30天内关注了30个好友,就很容易在平台上继续活跃,否则流失的风险就很高;LinkedIn发现新用户如果一星期内加到5个联系人,他们的留存率和使用频率将会提高3-5倍;Dropbox发现新用户只要使用1次Dropbox文件夹,变成忠诚用户的可能性大大增加。

然而仅仅知道“魔法数字”这个事实还远远不够,还应该知道这个事实背后的道理。明白道理的好处是:①如果你的产品功能点非常多,挨个试验要花费很大的精力,明白道理可以让试验有针对性。②容易混淆使用行为与留存提升的因果关系:使用该功能究竟是带来留存提升的“因”,还是留存提升后的“果”?

“魔法数字”现象之所以存在,背后的道理就是:产品中的某些功能可以让用户更快速地发现产品给他带来的价值。假如一个产品实现的用户价值是90分,而用户到达产品时可能只发现了其中的60分,另外的30分需要用户在使用产品的过程中逐渐发现。然而,用户的耐心是很有限的,如果没能让用户在耐心耗尽之前认识到产品带给他的价值,那么你没办法阻止他离开。例1中,“喜欢”以及“兴趣社区”这2个功能可以让用户更快速地发现该音乐APP的用户价值。

找到了“魔法数字”也就相当于打通了留存的“任督二脉”,事半而功倍。同样的手段其实广泛存在于我们每天都在用的产品中,比如:京东会对每月购物3天以上的用户发放积分奖励,Boss直聘把“消息”入口放到了应用内最醒目的位置。如图13。这样做都是为了让用户触发“魔法数字”。

图13.京东和Boss直聘中的魔法数字

技巧2:发现设计缺陷

这里的设计缺陷包括:测试同事未能发现的bug和让用户不舒服的设计。发现设计缺陷是一个先定性、再定量的过程,其目标通常是:提升转化漏斗中某个步骤的转化率。

A.在定性阶段,目标是找出用户行为异常的case。首先,明确自己想要提升转化漏斗的哪一步,并把这一步离开的用户使用“用户分群”功能标记出来。然后,通过“用户细查”功能去发现用户离开的前后都发生了什么,通常会找到一些“用户没有按照设计初衷使用”、“用户遇到功能bug”等类型的现象。

比如例2中,目标是提升“支付”这一步的转化率,通过“用户分群”把“到达支付页但没有确认支付”这样的用户标记出来,然后通过“用户细查”分析这部分用户的行为,最后发现:“没有完成支付”的用户中,很多都在支付页面“返回重新选择商品”。

B.在定量阶段,目标是估算定性阶段发现的问题所影响的用户数和占比。因为定性阶段发现的case既可能是单个用户遇到的个别问题,也可能是一群用户都遇到的普遍问题,所以我们需要结合影响的人数和占比来评估这里是不是要优化?优先级多高?定量计算时,首先使用“用户分群”将需要定量分析的用户定义出来,然后使用“转化漏斗”评估影响大小。

比如例2中,先用用户分群把具有“到达支付页面后返回,然后重新选择商品”这个行为特征得用户定义出来,这样就知道了这个问题每天/每周影响的用户数。然后把这个分群的用户放到漏斗中,去看这部分用户在“支付”这一步每天/每周的未转化比例有多少。

技巧3:估算转化提升空间

提升转化率时常常遇到这样的问题:我这个转化率是高呢还是低呢,还有多少提升空间?你基本没有可能拿得到竞品的数据作为参照,而且也没有必要,因为你自己的转化数据就包含了很多的信息。比如例3中,可以小范围尝试发放优惠券,然后分析收到了优惠券的用户购买转化率相对于没收到优惠券的用户提升了多少。这样你就知道了通过这一个策略,可以将整体的转化提升到多少。向新用户发放优惠券以促进购买转化在电商互联网金融中非常常见。图14是“考拉海购”和“爱钱进”对新用户发放优惠券的做法。

图14.考拉海购和爱钱进向新用户发放优惠券

4.搭建数据增长模型的一般化步骤

在AARRR模型中,最值得关注的是“激活”和“留存”。虽然“获取”也十分重要,但“数据驱动增长”只是为其提供了从“激活率”和“留存率”分析渠道质量的手段,其最核心的投放策略和以前相比没有太多变化;而“变现”和“推荐”的提升方法与“激活”类似,不单独讲述。

建立增长模型共分为4步:①定义增长指标。②寻找魔法数字。③优化核心功能。④提升核心功能的覆盖人数。

第一步:定义产品整体的激活与留存指标

要根据产品特性明确激活与留存的定义。比如电商通常会把“完成购买”作为激活的标识,而不是“完成注册”就得了。同理,产品人员也要想清楚是把“打开APP”作为留存的标识,还是把“浏览商品详情页”作为留存的标识?

第二步:寻找核心指标的“魔法数字”

在明确“留存”定义的基础上,使用“技巧1”中的方法寻找“魔法数字”以及承载“魔法数字”的产品功能。

第三步:优化核心功能

我们应该把有限的资源用于优先产品的核心功能,产品的核心功能指:“激活”过程中的必要功能和承载“魔法数字”的功能。因为如果“激活”相关的功能不好用,会导致用户直接走掉,而如果承载“魔法数字”的功能不好用,会导致“魔法数字”被触发的机会大大减少。

例如,Boss直聘中“注册”和“发布简历”就是激活过程必要功能,而“IM聊天”、“简历投递”则很可能是承载了“魔法数字”的功能。

对于“核心功能”,依照“技巧2”和“技巧3”的方法尽可能提升其转化率,以期让这些功能更加好用。

第四步:提升“魔法数字”的覆盖人数

假如你开了一家很有特色饭店,你肯定会尽力把最好的招牌菜给顾客品尝。因为顾客品尝这些招牌菜后,更容易认可饭店的厨艺水平 。那么顾客就更容易在下个周末再来你的饭店消费。反之,如果顾客在第一次光顾的时候没有品尝到招牌菜,他会误以为你的饭店口味很一般,也就不会再来第二次了。“魔法数字”其实就是产品的“招牌菜”。

在完成核心功能优化之后,要使出浑身解数让用户触发“魔法数字”。可以通过“用户任务”、“物质激励”、“弹窗提示”、“push推送”、“把承载魔法数字的功能放到最显眼的位置”等等手段来实现。

有时候,你的产品中不止有一个魔法数字,为了最大化地挖掘用户留存的潜力,还需要试验下不同的魔法数字之间是否存在“叠加效果”。如果存在叠加效果,则应该把多个魔法数字组合起来使用;如果不存在叠加效果,则把实现成本低的作为首选方案,实现成本高的作为首选方案未被触发时的备选方案。比如案例1中“点击喜欢>3次”和“加入兴趣社区”就是具有叠加效果的2组魔法数字,可以同时引导用户“点击喜欢>3次”并“加入兴趣社区”。

5.后记

“数据驱动增长”是产品经理&运营的必备技能

通过数据来驱动产品增长是每个PM必备的技能,最好不要由“数据分析师”代劳,因为做这一切的事情有个重要前提——对产品和用户非常非常熟悉。比如,例1中需要非常清楚产品的用户价值才能有针对性发现承载魔法数字的功能,依据行为数据建立合理的假设也需要对用户非常熟悉,再如,例2中需要知道“加入购物车”有哪些操作入口,否则转化漏斗数据就会不全。

关于“数据驱动运营”

增长的过程当然少不了运营工作的参与。但作者本人没有负责过运营工作,在运营这件事上缺少发言权,因此本文中只对“数据驱动运营”的常用方法做一下简略的介绍。

①渠道拉新。从质量、数量、价格几个维度设计投放策略,从转化漏斗、留存图(表)、新用户占比来分析渠道的质量。

②精准运营。通过用户的行为对用户进行分类,然后根据不同群体的特征,进行精细化运营。例如,用户在论坛上的行为包括:访问、浏览帖子、回复、评论、发帖、转发、分享等等,我们使用“用户分群”把用户分为4类:A浏览类、B评论类、C传播类和D内容生产类,然后向不同类型的用户推送不同的消息。再如,我们可以通过用户的使用行为、个人属性信息去推断哪些用户具有较高的付费变现可能性,然后对这些用户赠送限量的优惠券。

活动运营。对于一个活动的效果分析,应该与AARRR模型中的至少1个联系起来,而不是仅仅看:有多少人参与了活动、该活动给某个功能导入了多少UV。比如,活动A的目标是提升留存,那么还要应该分析参与了活动的用户留存率相比没参与活动的用户提高了多少,这些用户在参加活动前后的每周活跃天数是否有增加等等。

数据驱动增长的局限性

没有数据是万万不能的,但是数据也不是万能的!

比如例1中的“收藏”、“兴趣社区”等功能的第一版方案是怎么得到的?显然不是通过数据,因为第一版之前没有数据可用;再如,为什么有的用户到了支付页后看了一眼,什么都没点就走了,这时用户没留下可分析的数据。

这说明了数据驱动的2个局限性:①数据很难启发重大创新。②某些问题压根没有数据可供分析。

可见,除了数据驱动之外,产品的优化一定还要依赖其他驱动力。关于其他驱动产品增长优化的力量,稍后我会写一篇《不可不知的4个产品进化驱动力》予以介绍,不久就会与大家见面。

如果您能够阅读到了这里,我相信你一定是一个有意志力的人。世上没有什么是一个有意志力的人办不到的,更别说掌握一个不算复杂的技能了。你接下来要做的是在工作中去不断使用这个技能。Come on!

 

本文作者@刘鑫洋  由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务    广告投放平台    龙游游戏

78

]]>
//www.f-o-p.com/74371.html/feed 0
深度解析|互金用户增长模型框架! //www.f-o-p.com/72447.html //www.f-o-p.com/72447.html#respond Sat, 10 Feb 2018 03:32:47 +0000 //www.f-o-p.com/?p=72447 3 (62)

一、当我们在讨论用户行为时,我们在说什么

从基础出发,回归初始定义

很多日常脱口而出的词,其实我们并没有思考过它真实的含义。大多数争论和错误决策的起点,也在于定义的不清晰和不一致。

互金运营是离钱最近的一项工作,清晰的用户行为定义便显得尤为重要了。

用户行为

用户行为由最简单的五个元素构成,时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)。对用户行为进行分析,要将其定义为各种事件。比如用户搜索是一个事件,在什么时间、什么平台上、哪一个ID、做了搜索、搜索的内容是什么。这是一个完整的事件,也是对用户行为的一个定义。有了这样的事件以后,就可以把用户行为连起来观察。

用户行为分析

用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。

具体而言,用户行为分析是基于用户在互联网产品上的行为,以及行为背后的人发生的时间频次等维度,深度还原用户使用场景并且指导业务增长。

一个完整、多维、精确的用户画像=用户行为数据+用户属性数据。

消费者行为

消费者行为在狭义上讲:仅仅指消费者的购买行为以及对消费资料的实际消费。在广义上讲:消费者为索取,使用,处置消费物品所采取的各种行动以及先于且决定这些行动的决策过程,甚至是包括消费收入的取得等一系列复杂的过程。消费者行为是动态的,既涉及了感知、认知、行为以及环境因素的互动作用,也涉及了交易的过程。

消费者行为模型(AISAS)

消费者行为模型

随着互联网的兴起和发展,针对消费者进行研究的模型已经从最初的AIDMA模式(Attention 注意、Interest 兴趣、Desire 欲望、Memory 记忆、Action 行动),演化到了到后来的AISAS模式:

  1. Attention——引起注意
  2. Interest——引起兴趣
  3. Search——进行搜索
  4. Action——购买行动
  5. Share——发起分享

基于基础定义的分析框架搭建

在线性方向上,从“注意”到“分享”的核心路径上存在着多个关键节点,而由于“说服心理学滑梯”效应的作用(下文将说明),导致从起始节点到最终节点的过程中,用户会因为各种原因出现流失,从而形成用户转化漏斗。

对互金运营来说,需要结合公司当前目标和自身KPI,抓住转化漏斗的关键触点,据此设计相应的运营策略。

对用户行为进行分析,要将其定义为各种事件,而将时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)聚合在一起,便构成了一个完整的用户任务。从任务的层次来看,从核心到外围,可以分为三档:核心任务、扩展任务、外延任务。

对互金运营来说,必须深入到本公司产品的体系中,了解用户操作的关键路径和主线流程,根据用户任务的重要程度,设计运营活动,这样能够最大程度上避免运营和产品惨烈撕X的情况出现。在往下看之前,你可以停下来想一想,对于投资用户来说,TA的核心任务、扩展任务、外延任务分别是什么?

由于不同用户在转化漏斗的阶段各有不同,其在本平台所处的生命周期发展阶段也就有了群体差异。引入期、成长期、成熟期、休眠期、流失期,针对不同发展阶段的用户,运营策略的差别往往十分巨大。

这部分内容,在道是无此前的文章《用户生命周期管理的完整方法论:触动人心的运营策略02》已经有了比较详细的论述,需要了解的同学可以点击链接查看。

到这里,我们已经初步搭建起了用户增长策略的基本框架:

  1. 根据转化漏斗梳理操作流程,进而识别关键触点进行优化
  2. 根据任务层次梳理最小闭环,进而分层次、分阶段设计运营策略
  3. 根据用户生命周期进行用户分层,进而针对不同生命周期的用户实施差异化的运营手段

二、18字诀:为什么要分析用户行为

做画像

完整的互金用户画像=用户属性数据+用户行为数据+交易数据+风险收益数据。互联网公司擅长前2块,但往往偏重于一般的互联网用户分析,缺乏对金融和投资的理解;金融机构强于后2块,一般认为用户行为数据只是过程性信息而不屑收集,可能一款APP已经推出很多年都没有做过基本的埋点或转化率分析。

在整个用户画像的体系中,用户行为是串起用户和平台两端的其他3项数据的关键要素,值得深入探究和完善。

知偏好

通过对用户访问页面的类型、访问路径的深度,可以帮助识别用户对某些投资品种或运营活动的偏好程度,进而针对此类用户推送更多此类产品上架的信息,或是与相关产品有关的优惠券(加息券/抵扣券/满减券等)。平台再大一点,可以据此完善“千人千面”的前端架构设计。

此前GrowingIO、诸葛IO等用户行为分析机构,已经推出了此类产品,虽然在精度上还有待进一步加强,但毕竟是一个有益的尝试。从实际使用的反馈情况来看,偏好分析在投资理财类APP上的分析效果,会好于在借贷类产品上的应用。

控营收

从用户导入到用户流失,全链路跟进转化率和留存率提升。

根据公式:

用户生命周期价值(LTV)=(某个客户每个月的投资频次客单价毛利率)*(1/月流失率)

由此可知,在客单价和毛利率水平不变的情况下,我们可以着手的点有2个:

  1. 提升投资频次:持续做好用户转化节点的运营策略优化,让用户在“注册-实名-绑卡-交易-复投”的转化过程中,有充分的动力持续向下一步跃迁,实现交易笔数和交易金额的提升,最终提升平台用户生命周期价值。
  2. 降低流失率:通过释放出各种任务引导持续提升等级,进而做好用户的忠诚度提升;通过刺激活跃和召回策略提升用户留存,最终降低平台用户流失率。

做策略

做运营策略,并不是简单地抄一抄竞品、落实老板要求那么简单。或者换个角度说,如何更好地抄到竞品的精髓、把老板的要求落到可规划/可执行/可汇报的程度,都有赖于对用户行为数据的收集和分析。离开用户行为谈运营,无异于耍流氓。

搞复盘

根据用户行为数据复盘版本升级和运营活动的效果,并据此进行调整和优化。无论活动的目标是提升日活、提升GMV还是单品交易量,最终都要落实到用户在转化漏斗节点或用户任务上。

对于活动效果的检视,简单地看无非是“达成”或“未达成”,而对用户行为数据的分析,却能回答为什么、好在哪/不好在哪儿、下次如何和才能做得更好。

作比较

基于转化漏斗的各种转化率、基于海盗指标的拉新-促活-留存分析、基于用户任务体系的注册-投资-提现数据分析等,都能够帮助我们搭建一套对本平台指标体系搭建和竞品比较分析的框架,对于运营指标制订、资源申请和效果检视有显著的帮助。

三、如何搭建基于用户行为的增长体系

基于用户行为的增长体系建设,可分为前置条件、执行策略、通道搭建和落地配套原则4部分。下文将分别展开。

Part1.前置条件:用户数据准备

如上文所述,完整的互金用户画像体系,由如下这4部分数据构成:属性数据、行为数据、交易数据、风险收益数据。

互联网金融数据分析体系

  • 属性数据:用户作为自然人和社会人的最基本数据,也是其他三类数据的基础
  • 行为数据:串起用户和平台两端的其他各项数据的关键要素,一切运营策略的落脚点。以用户行为数据为基础,结合平台的标签体系,还可以得到衍生的用户转化数据和用户行为偏好数据,在此不详细展开
  • 交易数据:计算平台营收、ROI、LTV等经营指标的基础,也是用户价值的判断的重要标准
  • 风险收益数据:用户的投资属性数据,既是差异化运营的依据,也是平台落实风控合规要求的体现

属性数据举例

行为数据举例

基于以上数据,结合频率、时间维度、用户数等指标,就能得到更多指标数据,比如:

  • 时间周期(月)+投资次数=月活(MAU)
  • 最后一次回款日期+回款后最近一次投资日期=用户流失
  • 时间区间内投资金额/时间区间内投资用户数=人均投资金额

如果将用户投资行为,与最近一次交易时间、交易频率、单位时间内交易金额相结合(根据RFM模型),在计算和分析后对于用户价值判断、召回策略制定等方面将能够提供有力支撑。

  • R(Recency):用户投资的时间间隔
  • F(Frequency):用户在单位时间内投资的次数
  • M (Monetary):用户在时间内投资的金额

交易数据举例

风险收益数据举例

有关风险收益数据,稍微展开说一下:

对于大多数互金平台来说,产品的展示和推荐,首先还是基于营销的目的来做,不太考虑用户自身的风险承受力情况。甚至有些时候,在用户完成风险测评后,还会诱导用户购买超出自身风险承受力的产品,于是你就会看到下面这种画风:

XX金融在用户完成风险测评后给出的投资建议(图片来自公众号@智能投顾联盟)

按照这两年监管发展的方向,“把合适的产品卖给合适的投资者”的适当性原则落地,将逐渐从持牌金融机构向互联网金融公司逐步扩散。基于用户风险承受力和收益目标来进行产品和运营策略设计,一方面能够提高合规水平和平台安全边际,另一方面,也是对用户投资需求和投资能力的更进一步把握。这部分内容之前的文章也有涉及,可点击《触动人心的运营策略01:深解互联网金融用户属性》查看。

用户风险承受力与产品风险等级的匹配关系-基于用户风险承受力(5档分级)

用户风险承受力与用户投资目标的关系-基于用户风险承受力(3档分级)

2016年蚂蚁金服公布的《蚂蚁聚宝大众投资人大数据分析》中,透露出来的5项内容,分别都能对应到上文提到的四大类数据中:

注:

  1. 在实际搭建数据指标体系的过程中,指标会拆解得更加细化,这里不是写PRD,就不针对这四类数据对应的报表字段详细展开了
  2. 此处的“交易数据”,主要只用户发生投资行为后的持仓数据;而用户的首投、复投相关的时间、金额、产品数量等投资行为数据,包含在“行为数据”的类目下

Part2.用户增长模型搭建

基于用户行为的增长策略,依赖于三个基础模型的建立,它们分别是:转化漏斗模型、生命周期模型和任务分层模型。

其中:

  • 转化漏斗模型是在纵向上,对用户转化的节点进行分析;以此为基础,根据用户在不同转化节点的分布情况,对将用户在平台上所属的生命周期进行定义和划分
  • 任务分层模型是在横向上,对用户在平台上的各种行为进行拆解和分组,按照“核心任务-扩展任务-外延任务”的体系进行划分,以此为基础引导用户在不同层级的任务中迁移和成长
  • 最终,通过对用户转化率的持续优化、用户任务完成行为的持续引导,进而实现对平台各生命周期用户的差异化运营和服务,最终实现平台用户快速和持续的增长

模型Ⅰ-用户转化漏斗模型

关于转化漏斗模型,道是无在此前的文章中已经有过比较详细的描述,在此就不再展开。

转化漏斗模型(理财端)

基于以上模型,对于理财端用户的转化关键节点和对应的重要指标就可以比较轻松地掌握了。但在实际的应用中,这只是达到了60分的及格线而已。那么,该如何用更高阶的手段来使用转化漏斗模型呢?以下是2个可以参考的方向:

1、用户分支路径转化漏斗(以传播/邀请为例)

转化漏斗模型-分支路径转化

以转化漏斗模型的“传播”这个节点为核心,可以拆解出从“老用户看到界面邀请提示”到“新用户接受邀请并完成注册开户”,其间至少有7个转化节点。拆解到这个颗粒度,运营更多的工作开始浮现出来:

最终从结果来看,精细化的漏斗划分,一方面能帮助运营提升效率和投入产出比,另一方面,也有利于在活动过程中快速地定位和解决问题。活动结束后进行复盘时,做得好不好、下一次怎么才能做得更好,得出的结论才会更加靠谱。

2、方向二:平行转化漏斗

转化漏斗模型-平行转化

注:在上图中,对用户来说,投资、内容、每日加息、传播等业务,都被定义为“平行业务”。

如果按照不同的颗粒度、不同的业务条线来分拆,一个APP内其实可以拆解很多平行的转化漏斗,对运营来说,单纯为了拆而拆是没有意义的,我们需要根据当前运营重点和部门KPI梳理出需要重点关注的几个平行漏斗(同一时期内数量一般不超过3-4个,多了你也顾不过来)。一般来说,大概的方向有这么几个:

  • 抓用户主线转化流程:注册/绑卡/普通投资/定投
  • 抓用户活跃转化:推送/内容/每日加息/签到/老用户复投
  • 抓用户拉新转化:邀请好友/新用户首投

对同一时期内进入平台的用户,可以通过同期群分析等方式,分析这些用户在进入平台后的一段时间内(如果是公募基金,按照最短的申赎时间来看, 可以设定为一周),在各主要平行业务的使用情况和转化情况,并进一步了解用户在各业务上重合的程度。

基于以上分析,通过页面引导、活动激励等方式,结合平台的用户成长体系,促成用户在各平行业务之间的跃迁。

下面以与“投资”相关的几条平行业务进行举例说明:

示例:陆金所

以陆金所的印章体系为例,通过对用户成长路径的设计,引导用户在不同的业务之间跃迁,持续进行各类产品的交易、参加平台各类活动,最终提升用户的活跃度和留存率。

模型Ⅱ-用户生命周期模型

用户生命周期通常分为五个阶段,分别为:引入期、成长期、成熟期、休眠期、流失期。

通过各个时期特征的提炼,可将这五个时间分为三个运营区间:

  • 获客区——引入期,通常说的“拉客”,主要运营手段为拉新,主要考核指标为留存率;
  • 升值区——成长期+成熟期,通常说的“接客”,主要运营主段为激活,主要考核指标为增长率和转化率;
  • 留存区——休眠期+流失期,通常说的“留客”,主要运营手段为留存,主要考核指标为为留存率和召回率。

用户生命周期模型

新手首先碰到的问题,往往是不知道按照什么标准来划分生命周期节点。其实在实际操作的过程中,你并不需要真的做出一个用户生命周期分布图,然后据此操作。实际上,用户处于周期的哪个阶段,是由其行为决定的。所以,运营的抓手,也是落在用户的行为上。

比如,你发现近期平台上产品的申购金额几乎没有什么增长,甚至还有所下降。于是,你找BI同学拉数据,发现近1个月平台上已注册&未交易用户占比有上升的趋势,而且用户复投率也有所下降。结合上文的用户转化漏斗模型,你可以得出初步结论:

  • 注册用户的交易转化率偏低,一方面可以内部排查,看看在系统层面,交易流程是否有问题;另一方面,可以通过短信/PUSH/站内信/APP首页弹窗等方式,给用户推送新手大礼包(新手红包+体验金+高收益新手标)引导用户完成首投转化。在此,实际上就是针对这一批引入期用户进行了交易转化率提升的操作。
  • 用户复投率下降,原因可能比较复杂和多样,可以多观察几天,并跟历史基线数据做比较。有时很可能正是用户还没到发薪日没钱投资,或是前一阵做过大促,大批用户买了期限较长的产品尚未回款,所以没有新的资金进行复投。

当用户处于不同发展阶段时,用户价值会产生相应的变化,因此,也需要针对不同阶段来设计对应的运营目标和策略。相关内容道是无已经在此前的文章中有过较为详细的描述,在此不再展开。

模型Ⅲ-用户任务分层模型

互金用户任务分层体系(理财端)

对于理财端的用户来说,在一个平台上所有的行为,都可以放到“核心任务-扩展任务-外延任务”的框架中进行考核和分析,这就是道是无在本部分要介绍的“用户任务分层模型”。

仔细观察后,你会发现一个很有意思的现象,“模型Ⅰ-用户转化漏斗模型”其实是以平台为中心的用户转化视角,而“模型Ⅲ-用户任务分层模型”则是以用户为中心的需求满足视角。两个模型有同样的转化节点,但模型Ⅰ是扁平的,而模型Ⅲ却是带权重的。

1、任务分层结构:

注:把“成为平台投资者”放在扩展任务区域的原因——对用户来说,“成为平台投资者”这个任务,其实是“赚钱”任务的前置条件,确实很重要,但并不是用户首先关心的问题,所以就把该任务的权重将至扩展任务。

2、用户任务分层模型中的市场机会:

  • 核心任务:提供亿级用户规模的机会。满足互金核心任务需求的,从前是金融体系的银行、券商、保险和基金等金融机构,后来是推出了余额宝的蚂蚁金服。你会发现这一类公司做的就是面向海量用户提供“存钱-赚钱-取钱”的基础服务,它们在的用户运营上谈不上有多大特色,但选对了时间和任务模式,成功的概率最高。这类公司应对洗牌风险的能力为“强”
  • 扩展任务:提供千万级用户规模的机会。满足扩展任务需求的,往往在效率上有表达提升。它包括两类公司:一类是腾讯、京东这样的互联网巨头,从成为平台用户的扩展任务切入(即俗称的“用户导入”),本质上做的是流量生意;另一类是平安、玖富、拍拍贷这样的互金玩家,模式有:①平安陆金所:通过强大的金融产品整合和供应能力做好“投资-复投”任务②玖富/悟空理财和拍拍贷:抓住P2P的时间窗口,做好“获得收益-增加收益”任务,以及简化和降低准入门槛,做好“成为平台投资者”任务这类公司应对洗牌风险的能力为“中”
  • 外延任务:提供百万级用户规模的机会。以满足外延任务需求为特色的,多数是互联网系的头部互金公司。它们在核心任务上找不到突破点,于是立足扩展任务,发力外延任务,在获客手段、运营手段、补贴力度、差异化资产获取和包装上都做得最为有声有色。这类公司应对洗牌风险的能力为“弱”

PS:做外延业务如果用力过猛,走上邪路,极致就是传销和庞氏骗局了。不少人痴迷所谓的用户裂变方法,如果脱离了用户的核心任务,那就肯定不是健康的用户增长模式——既无法带来合法的收入,规模增长也无法持续。

3、任务分层关系:

  • 核心任务:用户首先关心的是赚钱,赚钱的主线流程是“投入本金(入金)→获得收益(增值)→获利了结(出金)”。平台是否安全、平台收益是否有吸引力、要用钱时是否能够及时取出、主线操作流程是否方便,这是用户在核心任务区域最关心的几个问题,它们直接决定了“扩展任务”和“外延任务”是否存在
  • 扩展任务:扩展任务中,“复投”、“增加收益”、“提前获利了结”这3个一级任务,分别对应核心任务中“投入本金”、“获得收益”、“获利了结”这3个二级任务,前者是后者的进一步扩展和优化
  • 外延任务:外延任务附属于核心任务和扩展任务,当运营活动主要落在外延任务区域时,需求基本在运营经理层面就可以搞定了。如果运营活动落到扩展任务或核心任务区域,往往就需要产品经理比较深度的配合了。尤其是落到核心任务区域的运营活动(体验金、加收益等),往往要横向统筹多个部门,最容易踩到坑里去的往往也是这类活动。

4、任务分层角色统筹:

  • 核心任务是产品经理主要关心的领域,平时说的APP核心功能设计、用户体验设计基本都落在这个区域
  • 外延任务往往是运营经理发力的着眼点,各种拉新、促活、留存的运营活动,都落在这个区域
  • 扩展任务区域则是产品和运营的交界地带,对产品经理来说,扩展任务是用户体验持续优化的方向,对运营经理来说,扩展任务中的各项子任务,都是运营活动很好的载体

如果你仔细观察就会发现,一个高阶的产品经理或运营经理,常常是能够按照“核心任务→扩展任务→外延任务”的方向来思考,同时又能够充分立足各自业务目标和KPI,进而设计方案并安排优先级的人。

反过来看,有时运营同学向产品同学提出一个运营需求时,会很诧异:“咦,为什么产品同学当场炸毛了?”其实,如果你了解用户任务分层模型就会知道,这次你提的这个需求,大概率是让产品同学感觉用户的核心任务流程受到干扰了。基于对用户任务分层的洞察,运营对产品中各种功能的权重才能有更合理的把握,与产品和开发沟通时,才能有共同的讨论基础。

下面以京东金融APP的“任务中心”为例,对相关任务进行拆解和分析:

京东金融任务体系拆解

通过上图可以看出:

  • 互联网金融的最关键的点是交易,所以叠加在核心任务和扩展任务上的运营激励往往比较大
  • 邀请好友使用京东金融APP,能够间接带来交易量的提升,所以给予了中等程度的激励
  • 每日玩金币游戏,由于是一个单纯的促进用户活跃的活动,与核心任务距离比较远,对于用户核心需求的满足程度也较低,所以给予了比较弱的运营激励

不过需要注意的是,不同类型的公司,在处于不同发展阶段时,业务目标会有不同的侧重点,所以在运营活动方案和配套激励措施的设计上,会有各自个性化的地方,不能直接套用模型,还需要具体问题具体分析。

Part3.用户成长路径建设

互金用户成长框架

对于互金业产品来说,用户的转化和成长是在两个层面上实现的:

  • 金融层面

用户投资金额、投资产品复杂度的提升,背后代表的是用户风险承受力和收益目标的提升

  • 互联网层面

用户在平台内成熟度的提升,它表现为在基于主线转化漏斗的成长体系上,持续不断地向漏斗的下一个环节迁移和成长

从金融层面看,用户在财务生命周期中所处的家庭发展阶段,是影响用户在金融层面成长的背景性因素;同时,用户风险承受力、收益目标、收入水平、投资经验等都是影响用户在金融层面成长的关键性因素。不过,由于财务生命周期涉及到大量个性化的线下数据,而且与投资、保障和资产配置的关联度太高,在本文中就不再详述,将来有机会另开文章讨论。

从互联网层面看,用户在平台上发展生命周期所处的节点,是影响用户在互联网层面成长的背景性因素;同时,用户在主线转化漏斗所处的节点、活跃情况、留存情况等都是影响用户在互联网层面成长的关键性因素。

总体来看,用户的成长过程是在金融和互联网这两个层面上交织进行的,最终都体现为用户在平台上各种各样的投资行为。

成长模式Ⅰ-用户在金融层面的成长

理财端用户投资成长体系

此前,蚂蚁财富(原“蚂蚁聚宝”)曾经对理财用户做了一个很形象的分层,从最初级的银行存款(幼儿园),到最高级的资产配置(六年级)分为7个进阶。按照这个标准来看,会发现大多数基金公司的现状是给一年级的小朋友,上三年级、四年级的课;国内一众做智能投顾的公司,在给幼儿园的小朋友,上六年级的课——这些情况,其实都是忽略了互金用户的分层以及用户成长的过程,体现到用户数和管理费收入上,回报的效果自然不会太好。

对互金平台来说,需要根据自身产品资源、用户分层,结合相应的运营策略,帮助和引导用户实现成长和进步。这一点上,我一直觉得京东金融的“小白基金”做得不错(没看到交易数据,欢迎京东的童鞋补充^_^):

京东金融-小白基金

用户点击进入“小白基金”,从左到右一次可以看到“天天赚”、“月月赚”、“高手专区”,分别对应货币型基金、债券型基金和混合型/股票型基金(原先还有基于短期理财基金的“周周赚”),帮助用户勾勒出“一年级(货基)→二年级(债基)→四年级(混合型基金)”的成长路径,用户还可以通过学习基金产品知识,获得从3%到4%不等的收益奖励。

对小白用户来说,货基和债基在能够承担的风险范围之内,又能够够获得额外的收益补贴,自然会有动力参与到投资和成长的过程中来。

其实对于多数理财类的APP来说,如果做好如下2点,这篇文章也就算没白看了:

  • 划分用户成长进阶,提供有梯度的产品和服务
  • 首先服务好低年级“小朋友”,在用户体验和运营策略上做出倾斜,辅以投资者引导和教育

成长模式Ⅱ-用户在互联网层面的成长

理财端用户交易行为成长体系

从理财端用户交易行为成长体系的构成来看,主要包括如下几个要素:

  • 垂直方向上,基于用户转化漏斗模型,设定转化路径和转化目标,从“完成注册”到“完成新的投资”都包括在内
  • 水平方向上,在转化漏斗的主要节点上,促成用户从上一个节点向下一个节点转化和成长,从“已下载未注册”到“汇款后N天未投&账户内无余额”,都有各自的转化目标
  • 在配套条件上,针对相应生命周期内用户的特点,设定好“触发转化条件(如下载后的M天内)触发转化方法(如首页蒙层)触发转化激励(如阶梯现金券)”这整套运营手段,以保证用户转化和成长目标的落地
  • 重点强调:在促成用户“完成首投”、沉默/流失用户“完成新的投资” 的转化节点上,可以适当引入人工电话回访的方式,主体内容是“平台信心建设+未转化原因询问和解答+优惠激励”。只要成本可控,人工的方式会让用户感觉比较有温度,转化效果一般也还不错

下方,是陆金所针对“N天未投资&账户内有余额”的用户,推出的“1月回归礼”活动,主要目的是通过下发投资券短信的方式,促成休眠用户“完成新的投资”。

陆X所-1月回归礼

通过上图可以看出:

  • 用户触达的第一步就存在风险,下发的短信可能被用户手机上的安全软件禁用,导致用户看不到这条消息。相对比较保险的做法,可以采用“短信+邮件/推送/电话”的方式,确保用户肯定可以看到
  • 短信文案的表述容易让人误以为是诈骗短信,用户明明什么都没做,为什么就凭空“获得抽奖资格”?
  • 在可以做到针对休眠用户精准发送触达短信的基础上,最好的方式是确保所有收到短信的用户都能中奖,否则会比较影响用户感受。这一类活动的指导思想,应该是【确定能得到,不确定得到多少】:确定得到,能够确保用户有参与的动力;不确定得到多少,能够提供用户“赌一把”的乐趣。不过这也是大公司的苦恼,包括很多银行在内,由于用户规模大,为了控制营销成本,不得不祭出“数量有限、先到先得”这个法宝
  • 在适用的产品上,尽量不要太限制。用户之所以会进入休眠状态,肯定存在某种原因的,所以给这些用户的激励一定要更诱人,最好能给到无门槛的全场通用券,或至少放到明星产品或是一些新上架产品上

简言之,用户在互联网层面的转化和成长,其实也是一个比较复杂的过程,它既包括用户在主线流程上的转化,也包括用户在支线流程的转化。在转化的每一个节点上,一定要考虑清楚用户的利益点和风险点/困难点在哪里,并提前做好产品和运营手段上的准备,最终促成用户的持续转化和成长。

本部分的最后,再上一个案例——桔子理财新手任务成长任务。正如上文所说,用户的成长过程,是在金融和互联网这两个层面上交织进行的,两者相互依赖、相互促进。

桔子理财新手任务成长任务拆解

通过上图可以看出:

  • 从互联网层面的成长来看,桔子理财新手任务是在重点引导用户完成“渠道导入→注册→首投→传播”的主线流程转化。完成这样一个深度的操作过程后,用户对平台肯定是比较了解和信任的了(投入金钱&投入人脉关系),这样用户离开平台的成本就变得更高了
  • 从金融层面的成长来看,周周升属于短期高收益产品(7天后可赎回,年化最高8.39%),爱定存的期限从1个月(年化收益率5.5%)到12个月(年化收益率8.29%)不等,而且用户为了追求高收益,往往会倾向于投资期限较长的产品。

买入定期产品后,只有VIP用户有提前赎回特权,普通用户无法提前赎回(成为VIP用户需要在平台上的投资金额达到一定规模),这样也进一步提升了用户在平台上的留存率

  • 从激励的倾向性上看,可以看出桔子理财和京东金融具有比较明显的不同。在上例“京东金融任务体系拆解”中,对于“邀请好友使用京东金融APP”给予的是50个金币的中等程度激励,而在桔子理财这里,是给予400个桔子的最高强度激励。京东金融由于背靠京东商城,用户体量大,业务复杂度高,所以重在引导用户在各业务体系内的转化和活跃;桔子理财属于创业型平台,用户渗透率相对较低,所以重在扩大用户规模,更多地圈进用户后,再谋求转化

我们平时在做竞品研究和运营手段借鉴时,这样的背景性因素往往会被忽视,而直接照搬别人方法的结果,往往就是“七分看运气,三分看财力”,这种情况应该尽量避免。

综上,在不断完成任务、获得成长的过程中,用户获得了更多的权益和心理满足,平台也获得了用户的活跃和忠诚,在这里可以看到,一个好的运营策略设计,能够让用户和平台都获得双赢的。而用户成长体系的搭建,又穿插着“利益”、“荣誉”、“情感”、“安全”的种种套路,对人性弱点的窥探,在这里体现的淋漓尽致。

Part4. 落地配套原则

在充分把握用户行为的基础上,为了最大限度地发挥用户增长模型的效能,我们还需要有配套的指导原则和措施:

  • 一切从实际出发。任何方法或模型,都要基于公司的行业属性和当前发展阶段来使用,这是一条基本原则。彼之美味,吾之砒霜,尤其不能简单粗暴地照搬友商的方法。最典型的例子,是上文提到的京东金融和桔子理财对老拉新的激励程度差异,体现的正是这条原则
  • 使用PCDA来验证和拓展模型的有效性。通过计划阶段(Plan)- 执行阶段(Do)-检查阶段(Check)-行动阶段(Action)的不断循环,结合运营目标和数据复盘,配合做好ABtesting,形成适合本平台的有效运营手段体系
  • 指标拆解和运营活动设计的精细化。明确自己的关键目标,然后通过MECE(Mutually Exclusive Collectively Exhaustive,相互独立,完全穷尽)的方式,不断进行目标的分解;最后,拆到最小的颗粒度上,据此设计运营方案。比如上文提到的“用户分支路径转化漏斗(以传播/邀请为例)”,道是无强调“在老用户界面显化利己因素,在被邀请用户界面显化利他因素,最终将传播/邀请的转化率最大化”,在下方的拿铁智投活动页中就体现得很完整:对老用户,凸显的是“每位好友送您50元”;对新用户,凸显的是“最高加送鼓励金5%”

拿铁智投-老拉新案例

  • 小米加步枪有时候比长枪大炮更有效。这句话完整地说,应该是“(今天你拿在手里的)小米加步枪,有时候比(未来某一天可能拥有的)长枪大炮更有效”。如果平台成立时间不长,数据体系也不完备,划不出完整的用户生命周期,这时候又想快速提升交易转化率,就可以直接找数据同学,拉一下近一个月“已开户未交易”、“已首投未复投”的用户数据,给新用户发一批新手大礼包短信推送并跟进电话、给首投用户发一批(高收益新手标+定向现金券),直接看效果。草莽阶段,百废待兴,这时候简单粗暴比按部就班更有效
  • 最后,记得算清楚ROI——行业低潮期,钱还是得用在刀刃上

四、底层框架和指导思想

行为至此,全篇也将接近尾声了。

道是无整理了基于用户行为的增长逻辑背后,那一整套底层的思考框架。因为埃隆·马斯克Elon Musk)的缘故,这两年“第一性原理”很火,我也尝试从互金用户最底层的需求和行为模式出发,将全套的逻辑做一下简要的推演,参见下图:

基于用户行为增长逻辑的底层框架

用户底层需求

用户参与金融业务最底层的需求,直接目标是获得收益,而最终是为了消费。按照《金融学》的表述,“金融学的一个基本信条是:金融体系的终极功能在于满足人们的消费偏好,包括诸如食物、衣服和住所等全部基本生活必需品”。换成大白话,就是赚钱是为了更好地花钱。在这一点上,阿里、京东这样的平台,算是比较完美地实现了用户的“投资-消费”闭环。

用户获得收益的过程,就是将投入资金到理财平台,在达成收益目标后,转出资金的过程。用户在任何理财平台的操作,最终都可以被抽象到“投入资金→获得收益→转出资金”这一行为体系中。

经济学三公理

在目前所有的学科当中,道是无认为经济学是解释用户需求和行为最合理的框架与工具。而根据张五常先生的观点,经济科学最终可以归纳为三个最基本的公理:需求定律、成本概念和竞争含义。这三点,其实也是一切运营策略的起点。

  • 需求定律:核心思想是“价格对供求的作用是确定性的”,在这里,“价格”可以是是理财平台给出的金融产品收益率,也可以是互联网的用户体验度、运营提供的补贴和激励。用户的需求会被导向哪一家平台、到了某一个平台后是留还是走,都受到平台提供的“价格”影响
  • 成本:对用户来说,从下载APP到投资、分享,整个转化漏斗的每一个节点上,无论是选择YES还是NO,都意味着成本的付出。在互金运营中,需要重点考虑的是这四类成本:沉没成本、机会成本、边际成本和会计成本,它们是用户作出行为决策的基础。实际上,很多平台的运营策略,就是通过不断增加用户的沉没成本(金钱、时间和情感),持续增加用户心理账户的支出,让用户因为离开的成本太高而留下来
  • 竞争:根据百度百科的定义,竞争( competition)是个体或群体间力图胜过或压倒对方的心理需要和行为活动。即每个参与者不惜牺牲他人利益,最大限度地获得个人利益的行为,目的在于追求富有吸引力的目标,竞争是个人或群体的各方力求胜过对方的对抗性行为。同一个运营活动(比如请好友帮助砍价、邀请好友获返利、给宝宝投票等),如果引入排名机制,往往会较大幅度地提升用户参与意愿和持续参与的时间

说服心理学滑梯模型

说服心理学滑梯

根据说服心理学理论,对用户的说服和行为的促成,需要考虑如下四个要素:

  • 首先是重力,这代表用户做一件事的初始动机。对互金用户来说,就是通过投资赚取收益
  • 角度,它是运营从用户身上挖掘出来的动机和需求,依托于重力而存在。比如用户的初始动机是投资赚钱,运营通过设计各种活动的方式,设计出“邀请好友可以加收益”、“学习理财知识送红包”等活动,培养用户邀请好友加入平台的动机和学习理财知识的动机
  • 推动,是运营为用户提供的激励,目的是为了引导用户完成特定的行为,促成用户的持续转化和成长
  • 摩擦,是用户在平台上完成特定行为的阻力:有时是客观层面的,比如APP不稳定,或是绑卡成功率低,或平台产品收益率水平偏低;有时是主观层面的,比如平台的UI主色调是绿色(XX投资最初几个版本就是这样),让投资用户心里觉得不太舒适,或是平台名字起得拗口等等,原因不一而足

在说服心理学滑梯模型中,代表用户初始动机的“重力”与经济学三公理的“需求”存在着对应关系,代表用户完成特定行为阻力的“摩擦”,与经济学三公理的“成本”也是相对应的,它们是经济学公理在运营策略上的体现。

福格行为模型(BJ Fogg’s behavior model)

福格行为模型

福格行为模型(BJ Fogg’s behavior model)认为,要促成用户某个行为发生,需要同时具备以下三个要素:

  • 动机,根据百度百科的定义,动机是由一种目标或对象所引导、激发和维持的个体活动的内在心理过程或内部动力,是人类大部分行为的基础。在组织行为学中,动机主要是指激发人的行为的心理过程。通过激发和鼓励,使人们产生一种内在驱动力,使之朝着所期望的目标前进的过程。在这里可以很清晰的看到,用户的动机是行为发生的内驱力,是一种用户自主性较高的心理机制,而且往往要通过“激发和鼓励”才发生作用。在互金业务里,用户最底层的动机就是获得收益,而各平台努力的方向,是让用户来到自己的平台投资,持续留存,并带入更多的用户过来投资
  • 能力,是用户完成某种特定操作的的素质,或者说完成某种行为的水平高低。在互金业务中,用户的行为能力一般体现为是否拥有一台手机、是否有几秒钟的操作时间或是否有一定的投资资金,门槛非常低
  • 触发器,在这里指的是运营为用户提供的激励,用以促成用户完成某种行为

在福格行为模型中,“动机”与说服心理学滑梯模型的“重力”(初始动机)和“角度”(从用户身上挖掘出来的动机)存在对应关系,“能力” 与“摩擦”(用户在平台上完成特定行为的阻力)对应,“触发器”与“推动”(运营为用户提供的激励)相对应——这意味着说服心理学滑梯的每一个要素,最终都体现为福格行为模型中相应的操作要点。而福格行为模型,又是一切运营策略的基础框架。

以上文陆X所的1月回归礼为例,我们来看一下福格行为模型的实际应用:

  • 动机:用户的初始动机是通过投资赚取收益,运营挖掘出来的动机,是赚取平台提供的额外补贴奖励
  • 能力:用户只需拥有一台智能手机即可,几乎所有的互联网用户都能满足这一条件
  • 触发器:在这里陆X所运营为用户提供的激励是获得抽奖机会,用户有机会得到从5元到50元不等的投资券

当用户按照运营设定的路径完成特定的行为后,用户的转化和成长之路,又向前迈出了新的一步。

最后,道是无用三句话来概括《触动人心的运营策略(1-3)》这三篇文章的核心指导思想:

  • 以用户数据为基础
  • 以用户成长为主轴
  • 以用户交易为导向

以上,即互金用户增长的不二法门。

全文关键要点归纳如下:

  • 互联网金融数据分析体系的搭建和不断完善,是增长模型持续发挥作用的基础
  • 用户转化模型的使用方法和配套数据指标,在本系列上一篇文章中已经有过介绍。在此基础上,还有更为进阶和精细化的玩法:用户分支路径转化漏斗、平行转化漏斗
  • 用户生命周期模型,重点并不在于多么精确地划分周期节点,而是根据周期内相应用户的行为特征和数据,提供对应的运营策略,从头到尾做好“拉客-接客-留客”的工作
  •  用户任务分层模型,能够帮助大家梳理互金业务的用户任务体系:核心任务→扩展任务→外延任务。高阶的产品和运营,往往更加认同“核心任务>扩展任务>外延任务”的重要性设定,并以此为基础来进行产品设计或运营活动设计,同时,这也是各方顺利沟通的基本前提
  • 在用户的转化和成长路径建设上,可以从金融和互联网两个层面切入。它们分别受到用户的财务生命周期和在平台生命周期影响,各有特点,又相互交织

最后,本篇通过打通互金用户的底层需求、经济学三个公理、说服心理学滑梯模型和福格行为模型,挖掘出各种互金用户增长模型背后最底层的逻辑框架。

 

本文作者@道是无  由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务    广告投放平台    龙游游戏

78

]]>
//www.f-o-p.com/72447.html/feed 0
如何搭建基于用户行为的增长体系? //www.f-o-p.com/71726.html //www.f-o-p.com/71726.html#respond Tue, 06 Feb 2018 02:27:23 +0000 //www.f-o-p.com/?p=71726 1

本文以“WHAT-HOW-WHY”的框架为基础,按照第一步明确用户行为的相关定义和模型、第二步介绍如何搭建三大增长模型及配套落地指导原则、第三步说明基于用户行为增长模式的底层逻辑

•    “触动人心的运营策略系”系列,一共三篇文章,分别从用户属性分析、基于转化漏斗的生命周期划分、基于用户行为的增长逻辑切入,三篇文章中一以贯之的核心思想,就是用户的转化和成长

1

当我们在讨论用户行为时,

我们在说什么

从基础出发,回归初始定义

很多日常脱口而出的词,其实我们并没有思考过它真实的含义。大多数争论和错误决策的起点,也在于定义的不清晰和不一致。

互金运营是离钱最近的一项工作,清晰的用户行为定义便显得尤为重要了。

用户行为 

用户行为由最简单的五个元素构成,时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)。对用户行为进行分析,要将其定义为各种事件。比如用户搜索是一个事件,在什么时间、什么平台上、哪一个ID、做了搜索、搜索的内容是什么。这是一个完整的事件,也是对用户行为的一个定义。有了这样的事件以后,就可以把用户行为连起来观察。

用户行为分析  

用户行为分析,是指在获得网站访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站的规律,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。

具体而言,用户行为分析是基于用户在互联网产品上的行为,以及行为背后的人发生的时间频次等维度,深度还原用户使用场景并且指导业务增长。

一个完整、多维、精确的用户画像=用户行为数据+用户属性数据。

消费者行为

消费者行为在狭义上讲:仅仅指消费者的购买行为以及对消费资料的实际消费。在广义上讲:消费者为索取,使用,处置消费物品所采取的各种行动以及先于且决定这些行动的决策过程,甚至是包括消费收入的取得等一系列复杂的过程。消费者行为是动态的,既涉及了感知、认知、行为以及环境因素的互动作用,也涉及了交易的过程。

消费者行为模型(AISAS)  

 

 

消费者行为模型

随着互联网的兴起和发展,针对消费者进行研究的模型已经从最初的AIDMA模式(Attention 注意、Interest 兴趣、Desire 欲望、Memory 记忆、Action 行动),演化到了到后来的AISAS模式:

1、Attention——引起注意

2、Interest——引起兴趣

3、Search——进行搜索

4、Action——购买行动

5、Share——发起分享

基于基础定义的分析框架搭建

在线性方向上,从“注意”到“分享”的核心路径上存在着多个关键节点,而由于“说服心理学滑梯”效应的作用(下文将说明),导致从起始节点到最终节点的过程中,用户会因为各种原因出现流失,从而形成用户转化漏斗。

对互金运营来说,需要结合公司当前目标和自身KPI,抓住转化漏斗的关键触点,据此设计相应的运营策略。

对用户行为进行分析,要将其定义为各种事件,而将时间(when)、地点(where)、人物(who)、交互(how)、交互的内容(what)聚合在一起,便构成了一个完整的用户任务。从任务的层次来看,从核心到外围,可以分为三档:核心任务、扩展任务、外延任务。

对互金运营来说,必须深入到本公司产品的体系中,了解用户操作的关键路径和主线流程,根据用户任务的重要程度,设计运营活动,这样能够最大程度上避免运营和产品惨烈撕X的情况出现。在往下看之前,你可以停下来想一想,对于投资用户来说,TA的核心任务、扩展任务、外延任务分别是什么?

由于不同用户在转化漏斗的阶段各有不同,其在本平台所处的生命周期发展阶段也就有了群体差异。引入期、成长期、成熟期、休眠期、流失期,针对不同发展阶段的用户,运营策略的差别往往十分巨大。

这部分内容,在道是无此前的文章《用户生命周期管理的完整方法论——触动人心的运营策略02》已经有了比较详细的论述,需要了解的同学可以点击链接查看。

到这里,我们已经初步搭建起了用户增长策略的基本框架:

1、根据转化漏斗梳理操作流程,进而识别关键触点进行优化

2、根据任务层次梳理最小闭环,进而分层次、分阶段设计运营策略

3、根据用户生命周期进行用户分层,进而针对不同生命周期的用户实施差异化的运营手段

2

18字诀:

为什么要分析用户行为

做画像

完整的互金用户画像=用户属性数据+用户行为数据+交易数据+风险收益数据。互联网公司擅长前2块,但往往偏重于一般的互联网用户分析,缺乏对金融和投资的理解;金融机构强于后2块,一般认为用户行为数据只是过程性信息而不屑收集,可能一款APP已经推出很多年都没有做过基本的埋点或转化率分析。

在整个用户画像的体系中,用户行为是串起用户和平台两端的其他3项数据的关键要素,值得深入探究和完善。

知偏好

通过对用户访问页面的类型、访问路径的深度,可以帮助识别用户对某些投资品种或运营活动的偏好程度,进而针对此类用户推送更多此类产品上架的信息,或是与相关产品有关的优惠券(加息券/抵扣券/满减券等)。平台再大一点,可以据此完善“千人千面”的前端架构设计。

此前GrowingIO、诸葛IO等用户行为分析机构,已经推出了此类产品,虽然在精度上还有待进一步加强,但毕竟是一个有益的尝试。从实际使用的反馈情况来看,偏好分析在投资理财类APP上的分析效果,会好于在借贷类产品上的应用。

控营收

从用户导入到用户流失,全链路跟进转化率和留存率提升。

根据公式:

用户生命周期价值(LTV)

=(某个客户每个月的投资频次客单价毛利率)*(1/月流失率)

由此可知,在客单价和毛利率水平不变的情况下,我们可以着手的点有2个:

提升投资频次:持续做好用户转化节点的运营策略优化,让用户在“注册-实名-绑卡-交易-复投”的转化过程中,有充分的动力持续向下一步跃迁,实现交易笔数和交易金额的提升,最终提升平台用户生命周期价值。

降低流失率:通过释放出各种任务引导持续提升等级,进而做好用户的忠诚度提升;通过刺激活跃和召回策略提升用户留存,最终降低平台用户流失率。

做策略

做运营策略,并不是简单地抄一抄竞品、落实老板要求那么简单。或者换个角度说,如何更好地抄到竞品的精髓、把老板的要求落到可规划/可执行/可汇报的程度,都有赖于对用户行为数据的收集和分析。离开用户行为谈运营,无异于耍流氓。

搞复盘

根据用户行为数据复盘版本升级和运营活动的效果,并据此进行调整和优化。无论活动的目标是提升日活、提升GMV还是单品交易量,最终都要落实到用户在转化漏斗节点或用户任务上。

对于活动效果的检视,简单地看无非是“达成”或“未达成”,而对用户行为数据的分析,却能回答为什么、好在哪/不好在哪儿、下次如何和才能做得更好。

作比较

基于转化漏斗的各种转化率、基于海盗指标的拉新-促活-留存分析、基于用户任务体系的注册-投资-提现数据分析等,都能够帮助我们搭建一套对本平台指标体系搭建和竞品比较分析的框架,对于运营指标制订、资源申请和效果检视有显著的帮助。

3

如何搭建基于用户行为的增长体系

基于用户行为的增长体系建设,可分为前置条件、执行策略、通道搭建和落地配套原则4部分。下文将分别展开。

Part1.前置条件:用户数据准备

如上文所述,完整的互金用户画像体系,由如下这4部分数据构成:属性数据、行为数据、交易数据、风险收益数据。

 

互联网金融数据分析体系

属性数据:用户作为自然人和社会人的最基本数据,也是其他三类数据的基础

行为数据:串起用户和平台两端的其他各项数据的关键要素,一切运营策略的落脚点。以用户行为数据为基础,结合平台的标签体系,还可以得到衍生的用户转化数据和用户行为偏好数据,在此不详细展开

交易数据:计算平台营收、ROI、LTV等经营指标的基础,也是用户价值的判断的重要标准

风险收益数据:用户的投资属性数据,既是差异化运营的依据,也是平台落实风控合规要求的体现

属性数据举例 

 

行为数据举例

 

基于以上数据,结合频率、时间维度、用户数等指标,就能得到更多指标数据,比如:

时间周期(月)+投资次数=月活(MAU)

最后一次回款日期+回款后最近一次投资日期=用户流失

时间区间内投资金额/时间区间内投资用户数=人均投资金额

如果将用户投资行为,与最近一次交易时间、交易频率、单位时间内交易金额相结合(根据RFM模型),在计算和分析后对于用户价值判断、召回策略制定等方面将能够提供有力支撑。

R(Recency):用户投资的时间间隔

F(Frequency):用户在单位时间内投资的次数

M (Monetary):用户在时间内投资的金额

交易数据举例

 

风险收益数据举例

 

有关风险收益数据,稍微展开说一下:

对于大多数互金平台来说,产品的展示和推荐,首先还是基于营销的目的来做,不太考虑用户自身的风险承受力情况。甚至有些时候,在用户完成风险测评后,还会诱导用户购买超出自身风险承受力的产品,于是你就会看到下面这种画风:

 

XX金融在用户完成风险测评后给出的投资建议

(图片来自公众号@智能投顾联盟)

按照这两年监管发展的方向,“把合适的产品卖给合适的投资者”的适当性原则落地,将逐渐从持牌金融机构向互联网金融公司逐步扩散。基于用户风险承受力和收益目标来进行产品和运营策略设计,一方面能够提高合规水平和平台安全边际,另一方面,也是对用户投资需求和投资能力的更进一步把握。这部分内容之前的文章也有涉及,可点击《触动人心的运营策略01:深解互联网金融用户属性》查看。

 

 

用户风险承受力与产品风险等级的匹配关系-基于用户风险承受力(5档分级)

 

用户风险承受力与用户投资目标的关系-基于用户风险承受力(3档分级)

2016年蚂蚁金服公布的《蚂蚁聚宝大众投资人大数据分析》中,透露出来的5项内容,分别都能对应到上文提到的四大类数据中:

 

注:

在实际搭建数据指标体系的过程中,指标会拆解得更加细化,这里不是写PRD,就不针对这四类数据对应的报表字段详细展开了

此处的“交易数据”,主要只用户发生投资行为后的持仓数据;而用户的首投、复投相关的时间、金额、产品数量等投资行为数据,包含在“行为数据”的类目下

Part2.用户增长模型搭建

基于用户行为的增长策略,依赖于三个基础模型的建立,它们分别是:转化漏斗模型、生命周期模型和任务分层模型。

其中:

转化漏斗模型是在纵向上,对用户转化的节点进行分析;以此为基础,根据用户在不同转化节点的分布情况,对将用户在平台上所属的生命周期进行定义和划分

任务分层模型是在横向上,对用户在平台上的各种行为进行拆解和分组,按照“核心任务-扩展任务-外延任务”的体系进行划分,以此为基础引导用户在不同层级的任务中迁移和成长

最终,通过对用户转化率的持续优化、用户任务完成行为的持续引导,进而实现对平台各生命周期用户的差异化运营和服务,最终实现平台用户快速和持续的增长

模型Ⅰ-用户转化漏斗模型   

关于转化漏斗模型,道是无在此前的文章中已经有过比较详细的描述,在此就不再展开。

 

转化漏斗模型(理财端)

基于以上模型,对于理财端用户的转化关键节点和对应的重要指标就可以比较轻松地掌握了。但在实际的应用中,这只是达到了60分的及格线而已。那么,该如何用更高阶的手段来使用转化漏斗模型呢?以下是2个可以参考的方向:

1、用户分支路径转化漏斗(以传播/邀请为例)

 

转化漏斗模型-分支路径转化

以转化漏斗模型的“传播”这个节点为核心,可以拆解出从“老用户看到界面邀请提示”到“新用户接受邀请并完成注册开户”,其间至少有7个转化节点。拆解到这个颗粒度,运营更多的工作开始浮现出来:

 

最终从结果来看,精细化的漏斗划分,一方面能帮助运营提升效率和投入产出比,另一方面,也有利于在活动过程中快速地定位和解决问题。活动结束后进行复盘时,做得好不好、下一次怎么才能做得更好,得出的结论才会更加靠谱。

2、方向二:平行转化漏斗

 

转化漏斗模型-平行转化

注:在上图中,对用户来说,投资、内容、每日加息、传播等业务,都被定义为“平行业务”。

如果按照不同的颗粒度、不同的业务条线来分拆,一个APP内其实可以拆解很多平行的转化漏斗,对运营来说,单纯为了拆而拆是没有意义的,我们需要根据当前运营重点和部门KPI梳理出需要重点关注的几个平行漏斗(同一时期内数量一般不超过3-4个,多了你也顾不过来)。一般来说,大概的方向有这么几个:

抓用户主线转化流程:注册/绑卡/普通投资/定投

抓用户活跃转化:推送/内容/每日加息/签到/老用户复投

抓用户拉新转化:邀请好友/新用户首投

对同一时期内进入平台的用户,可以通过同期群分析等方式,分析这些用户在进入平台后的一段时间内(如果是公募基金,按照最短的申赎时间来看, 可以设定为一周),在各主要平行业务的使用情况和转化情况,并进一步了解用户在各业务上重合的程度。

基于以上分析,通过页面引导、活动激励等方式,结合平台的用户成长体系,促成用户在各平行业务之间的跃迁。

下面以与“投资”相关的几条平行业务进行举例说明:

 

 

示例:陆金所

以陆金所的印章体系为例,通过对用户成长路径的设计,引导用户在不同的业务之间跃迁,持续进行各类产品的交易、参加平台各类活动,最终提升用户的活跃度和留存率。

模型Ⅱ-用户生命周期模型   

用户生命周期通常分为五个阶段,分别为:引入期、成长期、成熟期、休眠期、流失期。

通过各个时期特征的提炼,可将这五个时间分为三个运营区间:

获客区——引入期,通常说的“拉客”,主要运营手段为拉新,主要考核指标为留存率;

升值区——成长期+成熟期,通常说的“接客”,主要运营主段为激活,主要考核指标为增长率和转化率;

留存区——休眠期+流失期,通常说的“留客”,主要运营手段为留存,主要考核指标为为留存率和召回率。

 

用户生命周期模型

新手首先碰到的问题,往往是不知道按照什么标准来划分生命周期节点。其实在实际操作的过程中,你并不需要真的做出一个用户生命周期分布图,然后据此操作。实际上,用户处于周期的哪个阶段,是由其行为决定的。所以,运营的抓手,也是落在用户的行为上。

比如,你发现近期平台上产品的申购金额几乎没有什么增长,甚至还有所下降。于是,你找BI同学拉数据,发现近1个月平台上已注册&未交易用户占比有上升的趋势,而且用户复投率也有所下降。结合上文的用户转化漏斗模型,你可以得出初步结论:

注册用户的交易转化率偏低,一方面可以内部排查,看看在系统层面,交易流程是否有问题;另一方面,可以通过短信/PUSH/站内信/APP首页弹窗等方式,给用户推送新手大礼包(新手红包+体验金+高收益新手标),引导用户完成首投转化。在此,实际上就是针对这一批引入期用户进行了交易转化率提升的操作。

用户复投率下降,原因可能比较复杂和多样,可以多观察几天,并跟历史基线数据做比较。有时很可能正是用户还没到发薪日没钱投资,或是前一阵做过大促,大批用户买了期限较长的产品尚未回款,所以没有新的资金进行复投。

当用户处于不同发展阶段时,用户价值会产生相应的变化,因此,也需要针对不同阶段来设计对应的运营目标和策略。相关内容道是无已经在此前的文章中有过较为详细的描述,在此不再展开。

 

模型Ⅲ-用户任务分层模型   

 

互金用户任务分层体系(理财端)

对于理财端的用户来说,在一个平台上所有的行为,都可以放到“核心任务-扩展任务-外延任务”的框架中进行考核和分析,这就是道是无在本部分要介绍的“用户任务分层模型”。

仔细观察后,你会发现一个很有意思的现象,“模型Ⅰ-用户转化漏斗模型”其实是以平台为中心的用户转化视角,而“模型Ⅲ-用户任务分层模型”则是以用户为中心的需求满足视角。两个模型有同样的转化节点,但模型Ⅰ是扁平的,而模型Ⅲ却是带权重的。

1、任务分层结构:

 

注:把“成为平台投资者”放在扩展任务区域的原因——对用户来说,“成为平台投资者”这个任务,其实是“赚钱”任务的前置条件,确实很重要,但并不是用户首先关心的问题,所以就把该任务的权重将至扩展任务。

2、用户任务分层模型中的市场机会:

核心任务:提供亿级用户规模的机会。满足互金核心任务需求的,从前是金融体系的银行、券商、保险和基金等金融机构,后来是推出了余额宝的蚂蚁金服。你会发现这一类公司做的就是面向海量用户提供“存钱-赚钱-取钱”的基础服务,它们在的用户运营上谈不上有多大特色,但选对了时间和任务模式,成功的概率最高。

这类公司应对洗牌风险的能力为“强”

扩展任务:提供千万级用户规模的机会。满足扩展任务需求的,往往在效率上有表达提升。它包括两类公司:一类是腾讯、京东这样的互联网巨头,从成为平台用户的扩展任务切入(即俗称的“用户导入”),本质上做的是流量生意;另一类是平安、玖富、拍拍贷这样的互金玩家,模式有:

①平安陆金所:通过强大的金融产品整合和供应能力做好“投资-复投”任务

②玖富/悟空理财和拍拍贷:抓住P2P的时间窗口,做好“获得收益-增加收益”任务,以及简化和降低准入门槛,做好“成为平台投资者”任务

这类公司应对洗牌风险的能力为“中”

外延任务:提供百万级用户规模的机会。以满足外延任务需求为特色的,多数是互联网系的头部互金公司。它们在核心任务上找不到突破点,于是立足扩展任务,发力外延任务,在获客手段、运营手段、补贴力度、差异化资产获取和包装上都做得最为有声有色。

这类公司应对洗牌风险的能力为“弱”

PS:做外延业务如果用力过猛,走上邪路,极致就是传销和庞氏骗局了。不少人痴迷所谓的用户裂变方法,如果脱离了用户的核心任务,那就肯定不是健康的用户增长模式——既无法带来合法的收入,规模增长也无法持续。

3、任务分层关系:

核心任务:用户首先关心的是赚钱,赚钱的主线流程是“投入本金(入金)→获得收益(增值)→获利了结(出金)”。平台是否安全、平台收益是否有吸引力、要用钱时是否能够及时取出、主线操作流程是否方便,这是用户在核心任务区域最关心的几个问题,它们直接决定了“扩展任务”和“外延任务”是否存在

扩展任务:扩展任务中,“复投”、“增加收益”、“提前获利了结”这3个一级任务,分别对应核心任务中“投入本金”、“获得收益”、“获利了结”这3个二级任务,前者是后者的进一步扩展和优化

外延任务:外延任务附属于核心任务和扩展任务,当运营活动主要落在外延任务区域时,需求基本在运营经理层面就可以搞定了。如果运营活动落到扩展任务或核心任务区域,往往就需要产品经理比较深度的配合了。尤其是落到核心任务区域的运营活动(体验金、加收益等),往往要横向统筹多个部门,最容易踩到坑里去的往往也是这类活动。

4、任务分层角色统筹:

核心任务是产品经理主要关心的领域,平时说的APP核心功能设计、用户体验设计基本都落在这个区域

外延任务往往是运营经理发力的着眼点,各种拉新、促活、留存的运营活动,都落在这个区域

扩展任务区域则是产品和运营的交界地带,对产品经理来说,扩展任务是用户体验持续优化的方向,对运营经理来说,扩展任务中的各项子任务,都是运营活动很好的载体

如果你仔细观察就会发现,一个高阶的产品经理或运营经理,常常是能够按照“核心任务→扩展任务→外延任务”的方向来思考,同时又能够充分立足各自业务目标和KPI,进而设计方案并安排优先级的人。

反过来看,有时运营同学向产品同学提出一个运营需求时,会很诧异:“咦,为什么产品同学当场炸毛了?”其实,如果你了解用户任务分层模型就会知道,这次你提的这个需求,大概率是让产品同学感觉用户的核心任务流程受到干扰了。基于对用户任务分层的洞察,运营对产品中各种功能的权重才能有更合理的把握,与产品和开发沟通时,才能有共同的讨论基础。

下面以京东金融APP的“任务中心”为例,对相关任务进行拆解和分析:

 

京东金融任务体系拆解

通过上图可以看出:

互联网金融的最关键的点是交易,所以叠加在核心任务和扩展任务上的运营激励往往比较大

邀请好友使用京东金融APP,能够间接带来交易量的提升,所以给予了中等程度的激励

每日玩金币游戏,由于是一个单纯的促进用户活跃的活动,与核心任务距离比较远,对于用户核心需求的满足程度也较低,所以给予了比较弱的运营激励

不过需要注意的是,不同类型的公司,在处于不同发展阶段时,业务目标会有不同的侧重点,所以在运营活动方案和配套激励措施的设计上,会有各自个性化的地方,不能直接套用模型,还需要具体问题具体分析。

Part3.用户成长路径建设

互金用户成长框架

对于互金业产品来说,用户的转化和成长是在两个层面上实现的:

金融层面

用户投资金额、投资产品复杂度的提升,背后代表的是用户风险承受力和收益目标的提升

互联网层面

用户在平台内成熟度的提升,它表现为在基于主线转化漏斗的成长体系上,持续不断地向漏斗的下一个环节迁移和成长

从金融层面看,用户在财务生命周期中所处的家庭发展阶段,是影响用户在金融层面成长的背景性因素;同时,用户风险承受力、收益目标、收入水平、投资经验等都是影响用户在金融层面成长的关键性因素。不过,由于财务生命周期涉及到大量个性化的线下数据,而且与投资、保障和资产配置的关联度太高,在本文中就不再详述,将来有机会另开文章讨论。

从互联网层面看,用户在平台上发展生命周期所处的节点,是影响用户在互联网层面成长的背景性因素;同时,用户在主线转化漏斗所处的节点、活跃情况、留存情况等都是影响用户在互联网层面成长的关键性因素。

总体来看,用户的成长过程是在金融和互联网这两个层面上交织进行的,最终都体现为用户在平台上各种各样的投资行为。

成长模式Ⅰ-用户在金融层面的成长   

理财端用户投资成长体系

此前,蚂蚁财富(原“蚂蚁聚宝”)曾经对理财用户做了一个很形象的分层,从最初级的银行存款(幼儿园),到最高级的资产配置(六年级)分为7个进阶。按照这个标准来看,会发现大多数基金公司的现状是给一年级的小朋友,上三年级、四年级的课;国内一众做智能投顾的公司,在给幼儿园的小朋友,上六年级的课——这些情况,其实都是忽略了互金用户的分层以及用户成长的过程,体现到用户数和管理费收入上,回报的效果自然不会太好。

对互金平台来说,需要根据自身产品资源、用户分层,结合相应的运营策略,帮助和引导用户实现成长和进步。这一点上,我一直觉得京东金融的“小白基金”做得不错(没看到交易数据,欢迎京东的童鞋补充^_^):

 

京东金融-小白基金

用户点击进入“小白基金”,从左到右一次可以看到“天天赚”、“月月赚”、“高手专区”,分别对应货币型基金、债券型基金和混合型/股票型基金(原先还有基于短期理财基金的“周周赚”),帮助用户勾勒出“一年级(货基)→二年级(债基)→四年级(混合型基金)”的成长路径,用户还可以通过学习基金产品知识,获得从3%到4%不等的收益奖励。

对小白用户来说,货基和债基在能够承担的风险范围之内,又能够够获得额外的收益补贴,自然会有动力参与到投资和成长的过程中来。

其实对于多数理财类的APP来说,如果做好如下2点,这篇文章也就算没白看了:

划分用户成长进阶,提供有梯度的产品和服务

首先服务好低年级“小朋友”,在用户体验和运营策略上做出倾斜,辅以投资者引导和教育

成长模式Ⅱ-用户在互联网层面的成长   

 

理财端用户交易行为成长体系

从理财端用户交易行为成长体系的构成来看,主要包括如下几个要素:

垂直方向上,基于用户转化漏斗模型,设定转化路径和转化目标,从“完成注册”到“完成新的投资”都包括在内

水平方向上,在转化漏斗的主要节点上,促成用户从上一个节点向下一个节点转化和成长,从“已下载未注册”到“汇款后N天未投&账户内无余额”,都有各自的转化目标

在配套条件上,针对相应生命周期内用户的特点,设定好“触发转化条件(如下载后的M天内)-触发转化方法(如首页蒙层)-触发转化激励(如阶梯现金券)”这整套运营手段,以保证用户转化和成长目标的落地

重点强调:在促成用户“完成首投”、沉默/流失用户“完成新的投资” 的转化节点上,可以适当引入人工电话回访的方式,主体内容是“平台信心建设+未转化原因询问和解答+优惠激励”。只要成本可控,人工的方式会让用户感觉比较有温度,转化效果一般也还不错

下方,是陆金所针对“N天未投资&账户内有余额”的用户,推出的“1月回归礼”活动,主要目的是通过下发投资券短信的方式,促成休眠用户“完成新的投资”。

 

陆X所-1月回归礼

通过上图可以看出:

用户触达的第一步就存在风险,下发的短信可能被用户手机上的安全软件禁用,导致用户看不到这条消息。相对比较保险的做法,可以采用“短信+邮件/推送/电话”的方式,确保用户肯定可以看到

短信文案的表述容易让人误以为是诈骗短信,用户明明什么都没做,为什么就凭空“获得抽奖资格”?

在可以做到针对休眠用户精准发送触达短信的基础上,最好的方式是确保所有收到短信的用户都能中奖,否则会比较影响用户感受。这一类活动的指导思想,应该是【确定能得到,不确定得到多少】:确定得到,能够确保用户有参与的动力;不确定得到多少,能够提供用户“赌一把”的乐趣。不过这也是大公司的苦恼,包括很多银行在内,由于用户规模大,为了控制营销成本,不得不祭出“数量有限、先到先得”这个法宝

在适用的产品上,尽量不要太限制。用户之所以会进入休眠状态,肯定存在某种原因的,所以给这些用户的激励一定要更诱人,最好能给到无门槛的全场通用券,或至少放到明星产品或是一些新上架产品上

简言之,用户在互联网层面的转化和成长,其实也是一个比较复杂的过程,它既包括用户在主线流程上的转化,也包括用户在支线流程的转化。在转化的每一个节点上,一定要考虑清楚用户的利益点和风险点/困难点在哪里,并提前做好产品和运营手段上的准备,最终促成用户的持续转化和成长。

本部分的最后,再上一个案例——桔子理财新手任务成长任务。正如上文所说,用户的成长过程,是在金融和互联网这两个层面上交织进行的,两者相互依赖、相互促进。

 

桔子理财新手任务成长任务拆解

通过上图可以看出:

从互联网层面的成长来看,桔子理财新手任务是在重点引导用户完成“渠道导入→注册→首投→传播”的主线流程转化。完成这样一个深度的操作过程后,用户对平台肯定是比较了解和信任的了(投入金钱&投入人脉关系),这样用户离开平台的成本就变得更高了

从金融层面的成长来看,周周升属于短期高收益产品(7天后可赎回,年化最高8.39%),爱定存的期限从1个月(年化收益率5.5%)到12个月(年化收益率8.29%)不等,而且用户为了追求高收益,往往会倾向于投资期限较长的产品。

买入定期产品后,只有VIP用户有提前赎回特权,普通用户无法提前赎回(成为VIP用户需要在平台上的投资金额达到一定规模),这样也进一步提升了用户在平台上的留存率

从激励的倾向性上看,可以看出桔子理财和京东金融具有比较明显的不同。在上例“京东金融任务体系拆解”中,对于“邀请好友使用京东金融APP”给予的是50个金币的中等程度激励,而在桔子理财这里,是给予400个桔子的最高强度激励。京东金融由于背靠京东商城,用户体量大,业务复杂度高,所以重在引导用户在各业务体系内的转化和活跃;桔子理财属于创业型平台,用户渗透率相对较低,所以重在扩大用户规模,更多地圈进用户后,再谋求转化

我们平时在做竞品研究和运营手段借鉴时,这样的背景性因素往往会被忽视,而直接照搬别人方法的结果,往往就是“七分看运气,三分看财力”,这种情况应该尽量避免。

综上,在不断完成任务、获得成长的过程中,用户获得了更多的权益和心理满足,平台也获得了用户的活跃和忠诚,在这里可以看到,一个好的运营策略设计,能够让用户和平台都获得双赢的。而用户成长体系的搭建,又穿插着“利益”、“荣誉”、“情感”、“安全”的种种套路,对人性弱点的窥探,在这里体现的淋漓尽致。

Part4. 落地配套原则

在充分把握用户行为的基础上,为了最大限度地发挥用户增长模型的效能,我们还需要有配套的指导原则和措施:

一切从实际出发。任何方法或模型,都要基于公司的行业属性和当前发展阶段来使用,这是一条基本原则。彼之美味,吾之砒霜,尤其不能简单粗暴地照搬友商的方法。最典型的例子,是上文提到的京东金融和桔子理财对老拉新的激励程度差异,体现的正是这条原则

使用PCDA来验证和拓展模型的有效性。通过计划阶段(Plan)- 执行阶段(Do)-检查阶段(Check)-行动阶段(Action)的不断循环,结合运营目标和数据复盘,配合做好ABtesting,形成适合本平台的有效运营手段体系

指标拆解和运营活动设计的精细化。明确自己的关键目标,然后通过MECE(Mutually Exclusive Collectively Exhaustive,相互独立,完全穷尽)的方式,不断进行目标的分解;最后,拆到最小的颗粒度上,据此设计运营方案。比如上文提到的“用户分支路径转化漏斗(以传播/邀请为例)”,道是无强调“在老用户界面显化利己因素,在被邀请用户界面显化利他因素,最终将传播/邀请的转化率最大化”,在下方的拿铁智投活动页中就体现得很完整:对老用户,凸显的是“每位好友送您50元”;对新用户,凸显的是“最高加送鼓励金5%”

 

拿铁智投-老拉新案例

小米加步枪有时候比长枪大炮更有效。这句话完整地说,应该是“(今天你拿在手里的)小米加步枪,有时候比(未来某一天可能拥有的)长枪大炮更有效”。如果平台成立时间不长,数据体系也不完备,划不出完整的用户生命周期,这时候又想快速提升交易转化率,就可以直接找数据同学,拉一下近一个月“已开户未交易”、“已首投未复投”的用户数据,给新用户发一批新手大礼包短信推送并跟进电话、给首投用户发一批(高收益新手标+定向现金券),直接看效果。草莽阶段,百废待兴,这时候简单粗暴比按部就班更有效

最后,记得算清楚ROI——行业低潮期,钱还是得用在刀刃上

4

底层框架和指导思想

行为至此,全篇也将接近尾声了。

道是无整理了基于用户行为的增长逻辑背后,那一整套底层的思考框架。因为埃隆·马斯克Elon Musk)的缘故,这两年“第一性原理”很火,我也尝试从互金用户最底层的需求和行为模式出发,将全套的逻辑做一下简要的推演,参见下图:

 

基于用户行为增长逻辑的底层框架

用户底层需求

用户参与金融业务最底层的需求,直接目标是获得收益,而最终是为了消费。按照《金融学》的表述,“金融学的一个基本信条是:金融体系的终极功能在于满足人们的消费偏好,包括诸如食物、衣服和住所等全部基本生活必需品”。换成大白话,就是赚钱是为了更好地花钱。在这一点上,阿里、京东这样的平台,算是比较完美地实现了用户的“投资-消费”闭环。

用户获得收益的过程,就是将投入资金到理财平台,在达成收益目标后,转出资金的过程。用户在任何理财平台的操作,最终都可以被抽象到“投入资金→获得收益→转出资金”这一行为体系中。

经济学三公理

在目前所有的学科当中,道是无认为经济学是解释用户需求和行为最合理的框架与工具。而根据张五常先生的观点,经济科学最终可以归纳为三个最基本的公理:需求定律、成本概念和竞争含义。这三点,其实也是一切运营策略的起点。

需求定律:核心思想是“价格对供求的作用是确定性的”,在这里,“价格”可以是是理财平台给出的金融产品收益率,也可以是互联网的用户体验度、运营提供的补贴和激励。用户的需求会被导向哪一家平台、到了某一个平台后是留还是走,都受到平台提供的“价格”影响

成本:对用户来说,从下载APP到投资、分享,整个转化漏斗的每一个节点上,无论是选择YES还是NO,都意味着成本的付出。在互金运营中,需要重点考虑的是这四类成本:沉没成本、机会成本、边际成本和会计成本,它们是用户作出行为决策的基础。实际上,很多平台的运营策略,就是通过不断增加用户的沉没成本(金钱、时间和情感),持续增加用户心理账户的支出,让用户因为离开的成本太高而留下来

竞争:根据百度百科的定义,竞争( competition)是个体或群体间力图胜过或压倒对方的心理需要和行为活动。即每个参与者不惜牺牲他人利益,最大限度地获得个人利益的行为,目的在于追求富有吸引力的目标,竞争是个人或群体的各方力求胜过对方的对抗性行为。同一个运营活动(比如请好友帮助砍价、邀请好友获返利、给宝宝投票等),如果引入排名机制,往往会较大幅度地提升用户参与意愿和持续参与的时间

说服心理学滑梯模型

说服心理学滑梯

根据说服心理学理论,对用户的说服和行为的促成,需要考虑如下四个要素:

首先是重力,这代表用户做一件事的初始动机。对互金用户来说,就是通过投资赚取收益

角度,它是运营从用户身上挖掘出来的动机和需求,依托于重力而存在。比如用户的初始动机是投资赚钱,运营通过设计各种活动的方式,设计出“邀请好友可以加收益”、“学习理财知识送红包”等活动,培养用户邀请好友加入平台的动机和学习理财知识的动机

推动,是运营为用户提供的激励,目的是为了引导用户完成特定的行为,促成用户的持续转化和成长

摩擦,是用户在平台上完成特定行为的阻力:有时是客观层面的,比如APP不稳定,或是绑卡成功率低,或平台产品收益率水平偏低;有时是主观层面的,比如平台的UI主色调是绿色(XX投资最初几个版本就是这样),让投资用户心里觉得不太舒适,或是平台名字起得拗口等等,原因不一而足

在说服心理学滑梯模型中,代表用户初始动机的“重力”与经济学三公理的“需求”存在着对应关系,代表用户完成特定行为阻力的“摩擦”,与经济学三公理的“成本”也是相对应的,它们是经济学公理在运营策略上的体现。

福格行为模型(BJ Fogg’s behavior model)

 

福格行为模型

福格行为模型(BJ Fogg’s behavior model)认为,要促成用户某个行为发生,需要同时具备以下三个要素:

动机,根据百度百科的定义,动机是由一种目标或对象所引导、激发和维持的个体活动的内在心理过程或内部动力,是人类大部分行为的基础。在组织行为学中,动机主要是指激发人的行为的心理过程。通过激发和鼓励,使人们产生一种内在驱动力,使之朝着所期望的目标前进的过程。在这里可以很清晰的看到,用户的动机是行为发生的内驱力,是一种用户自主性较高的心理机制,而且往往要通过“激发和鼓励”才发生作用。在互金业务里,用户最底层的动机就是获得收益,而各平台努力的方向,是让用户来到自己的平台投资,持续留存,并带入更多的用户过来投资

能力,是用户完成某种特定操作的的素质,或者说完成某种行为的水平高低。在互金业务中,用户的行为能力一般体现为是否拥有一台手机、是否有几秒钟的操作时间或是否有一定的投资资金,门槛非常低

触发器,在这里指的是运营为用户提供的激励,用以促成用户完成某种行为

在福格行为模型中,“动机”与说服心理学滑梯模型的“重力”(初始动机)和“角度”(从用户身上挖掘出来的动机)存在对应关系,“能力” 与“摩擦”(用户在平台上完成特定行为的阻力)对应,“触发器”与“推动”(运营为用户提供的激励)相对应——这意味着说服心理学滑梯的每一个要素,最终都体现为福格行为模型中相应的操作要点。而福格行为模型,又是一切运营策略的基础框架。

以上文陆X所的1月回归礼为例,我们来看一下福格行为模型的实际应用:

动机:用户的初始动机是通过投资赚取收益,运营挖掘出来的动机,是赚取平台提供的额外补贴奖励

能力:用户只需拥有一台智能手机即可,几乎所有的互联网用户都能满足这一条件

触发器:在这里陆X所运营为用户提供的激励是获得抽奖机会,用户有机会得到从5元到50元不等的投资券

当用户按照运营设定的路径完成特定的行为后,用户的转化和成长之路,又向前迈出了新的一步。

最后,道是无用三句话来概括《触动人心的运营策略(1-3)》这三篇文章的核心指导思想:

以用户数据为基础

以用户成长为主轴

以用户交易为导向

以上,即互金用户增长的不二法门。

全文关键要点归纳如下:

•    互联网金融数据分析体系的搭建和不断完善,是增长模型持续发挥作用的基础

•    用户转化模型的使用方法和配套数据指标,在本系列上一篇文章中已经有过介绍。在此基础上,还有更为进阶和精细化的玩法:用户分支路径转化漏斗、平行转化漏斗

•    用户生命周期模型,重点并不在于多么精确地划分周期节点,而是根据周期内相应用户的行为特征和数据,提供对应的运营策略,从头到尾做好“拉客-接客-留客”的工作

•    用户任务分层模型,能够帮助大家梳理互金业务的用户任务体系:核心任务→扩展任务→外延任务。高阶的产品和运营,往往更加认同“核心任务>扩展任务>外延任务”的重要性设定,并以此为基础来进行产品设计或运营活动设计,同时,这也是各方顺利沟通的基本前提

•    在用户的转化和成长路径建设上,可以从金融和互联网两个层面切入。它们分别受到用户的财务生命周期和在平台生命周期影响,各有特点,又相互交织

•    最后,本篇通过打通互金用户的底层需求、经济学三个公理、说服心理学滑梯模型和福格行为模型,挖掘出各种互金用户增长模型背后最底层的逻辑框架

参考资料:

1、用户行为、消费者行为、消费者行为模型(AISAS)、竞争:这四个词条的定义来自百度百科

2、为什么要做用户行为分析?

3、解剖麻雀之心:微博的信息呈现格式

4、张五常:经济学只有三个公理

5、如何巧用心理学 高效优化网站转化率?

6、金融学(第二版),博迪等著,中国人民大学出版社

 

本文作者@张德春   由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务    广告投放平台    龙游世纪

78

]]>
//www.f-o-p.com/71726.html/feed 0
细数App推广要做哪些事!懂渠道,做方案,有人脉,分析竞品… //www.f-o-p.com/57826.html //www.f-o-p.com/57826.html#respond Mon, 09 Oct 2017 01:26:50 +0000 //www.f-o-p.com/?p=57826 3 (31)

1.学会竞品分析

竞品分析是各个岗位上最重要技能之一。

只有产品经理需要做竞品分析吗?在我来看,包括CEO在内的任何一个职位都是需要“竞品分析”,竞品分析可能不是一定要去分析竞品的某一个产品功能,而是站在不同角度去分析竞品的方方面面,前提是有价值的产品或者团队。产品经理的竞品分析可以是分析竞品的功能结构,设计师的竞品分析是设计风格,管理层的竞品分析是团队结构、管理方式,而对于App推人员来说,竞品分析是分析竞品的投放策略,能够帮助我们了解渠道市场,并且,如果你是一个App推广小白或者是刚接触一个陌生领域的App,观察分析竞品的投放渠道也是帮助你快速学习了解这一领域的重要途径。所以,竞品分析会让你有两个最有价值的收货:

①.学习竞品投放策略

②.观察竞品投放动态

 

2.学会控制预算、成本

现在根据创投数据公众号「氢资讯」数据,平均一天有12家企业获得融资的消息,似乎互联网公司永远都有花不完的钱,App推广是一家创业公司相对来说预算最多的一个职位,手里面拿着公司领导给的预算,但是,能够控制预算带来最高的效果是每一个老板想看到的,应该也是推广人自己的优秀项目经验,所以在控制成本预算之前你必须了解到:

你的产品处于一个什么阶段?

从产品角度来说,几乎没有一个产品可以傲娇到可以上线之后就可以不顾一切的推广营销,如果有,请谨慎购买。一个好的产品务必要经过不断的打磨,这个过程产品架构仍不完善,用户体验不是很好,这个时候更多的应该是从运营的角度来不断的通过各种运营机制来完善这款产品,而不是盲目的花大价钱来获取可能不是你精准的用户,或者是你最想到却留不住的用户。

提前做好推广计划:

没有计划的花钱对公司来说就是再给自己挖坑,所以,为了对公司负责也对自己项目经验负责,请在推广之前做好推广计划。

3,基本的商务能力

App推广避免不了会做一些对外的合作,这个时候你就需要跟渠道、跟其他CP、对领导或者老板接触,为了一个合作,你有可能需要不断的去尝试各种方法使这个合作能够达成从而是你的业绩距离KPI能够更进一步,这个时候你就要具备基本的商务能力,这个技能也不是与生俱来的东西,有的时候需要卖个萌、耍个贱,毕竟,KPI就是钱啊。

 

4,跑会、参加活动

抛开App推广这个属性,多数互联网人热衷于参加各种活动以及社交。或许为了合作,或者为了学习,当然也或许为了礼拜五的下午不上班(很多活动都是礼拜五下午开的),所以,除了上面说的几点,你可能还需要参加一些活动。最重要能够有所收获:

1.学习App推广知识

2.结交更多人脉

3.去谈一个合作

4.了解更多渠道资源

5.一个很好的不上班不扣工资的理由

 

5,关注行业热点

对行业保持一个足够的关注度是每一个领域对应的每一个职位都应该具备的基本素质,这个和自身的App推广并无直接的关系,能够带给你的是一个优秀习惯以及延伸的其他技能的学习和提升。除此之外,行业发生和工作相关的动态是作为一个营销推广人员可以把握的。当然,热点营销成功几率很小,但是需要不断去尝试。

 

6,建立自己的人脉关系

如果上面说的几点都没有的话,那么,你如果在这个圈子内有足够的人脉资源也是大大加分的,这里所说的人脉关系不仅仅是加了微信好友,留了手机号码,而是真正能够在你需要的时候可以和你一起合作的人脉关系。举个栗子,你正在策划一个大会活动,那么这个时候你需要足够多的宣传渠道支撑,这个时候,你希望某某App可以做协办方支撑,但是现在你的活动并不能给对方带来曝光或者其他利益的情况下,如果是一个陌生人别人肯定会对你不屑。因此,足以见得人脉关系的重要性。

 

7,精通推广渠道

对于大多数公司来说,首先衡量一个人能不能胜任App推广一职无法第一眼看到以上几点,所以,掌握App推广渠道是最基本的一点。下面是为CP列举的最基本的渠道信息:

安卓应用商店

市场:百度手机助手/360手机助手/应用宝/小米应用商店/华为软件商店/联想乐商店魅族应用商店/OPPO可可软件商店/vivo手机助手/三星应用商店/锤子应用商店/豌豆荚/应用汇/搜狗手机助手/木蚂蚁/PP助手(UC淘宝手机助手)/安智…

  • 需要掌握技能:
  • 如何提交应用?
  • 如何申请首发
  • 怎么做关键词覆盖
  • 免费帮/总榜自然排名规则?
  • 专题如何申请?
  • 换量合作规则?
  • 常规活动有哪些?
  • 广告投放规则?
  • ……

IOS渠道市场:AppStore/PP助手/海马助手/同步推/海马助手/快用苹果助手/XY苹果助手…

(AppStore)需要掌握技能:

  • 怎么上热门搜索?
  • 如何覆盖覆盖耕读哟关键词
  • 怎么提升关键词排名?
  • 评论如何优化?
  • 如何做联想词?
  • 怎么写描述/标题/关键词?
  • 如何提升榜单排名?
  • 加速审核怎么操作?
  • 如何获得编辑推荐?
  • ……

 

网盟渠道

收费模式:CPA/CPD/CPC/CPS…

积分墙

  • 那几积分墙的量大?
  • 用户质量如何?
  • 行业口碑如何?
  • 功能是否全面?
  • 先付款后付款?
  • 功能是否全面?刷下载?留存

信息流

今日头条/陌陌信息流/UC浏览器/新浪微博粉丝通/搜狐汇算信息流/腾讯系信息流)

  • 开户要求?
  • 素材审核?
  • 售卖方式?
  • 优化技巧?
  • ……

 

线下渠道:

地推/地铁公交/楼宇电梯/广告传媒…

  • 人群受众
  • 价值转化
  • 地理位置

 

相关合作:

超级App(付费广告/免费合作)

  • 用户属性
  • 用户量级
  • 用户质量
  • 合作方式
  • (付费)售卖方式

换量合作

合作形式:App之间换量/App和应用商店换量

换量目的:激活换激活/下载换下载/曝光…

换量目形式:

  • 内容合作
  • 资源置换
  • 应用内推荐

PR传播

PR传播

社会化营销

微博九宫格(组团/找大V/创意)

H5传播(准备/策划/制作/落地/传播/转化)

明星/大V(资源/推广形式)

新闻稿件传播:

  • 创业融资报道
  • 相关科技媒体
  • App推荐报道

 

其它:数据分析数据分析平台:(百度统计/友盟统计/诸葛IO/TalkingData/自有统计后台)分析维度:

用户行为分析

②渠道效果评估


App运营推广辅助工具

功能对比:

  • 评论监控功能
  • 关键词监控
  • 榜单排名监控
  • 关键词数据导出功能
  • 下架应用监控
  • VIP权限对比
  • 安卓/IOS渠道覆盖
  • ……

以上。是对于一个App推广需要了解的技能,如有补充,欢迎在留言讨论。

 

本文作者@ APP推广ASO  由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务  信息流广告投放  广告投放平台

78

]]>
//www.f-o-p.com/57826.html/feed 0
盘点|市场、运营、产品必备的30款精细化运营工具大全 //www.f-o-p.com/40853.html //www.f-o-p.com/40853.html#respond Sat, 22 Apr 2017 03:43:22 +0000 //www.f-o-p.com/?p=40853 1

通过精细化运营,挖掘存量用户的消费能力,提升存量用户的消费体验无疑成为当下以及未来一段时间国内互联网行业的发展重点。

2017年,用户需求的转变和提升无疑成为了消费升级的一种最为直接的体现,他们开始需要不同的产品,不同的服务,如果我们依然提供给他们相同的产品,相同的服务的话,用户必然会选择用脚投票,放弃使用我们的产品。

通过不断的精细化运营,挖掘存量用户的消费能力,提升存量用户的消费体验无疑成为当下以及未来一段时间国内互联网行业的发展重点。

1.精细化运营是什么?

精细化运营就是我们在常规的运营手段的基础上,根据市场、渠道、用户的历史数据表现,细分用户群,针对不同的用户提供与他们的偏好相吻合的内容,以达到提升最终转化率,赢得用户的目的。

2.我们为什么要做精细化运营?

对我们而言,打造精细化运营可以对目标用户群体或者个体进行特征和画像的追踪和明确,帮助我们分析用户在某个时间段内容的特征和习惯,最后让企业形成一种根据用户特性而打造的专属服务,从而赢得用户。

3.工欲善其事必先利其器,要做精细化运营有哪些工具呢?(排名无先后)

1.实用精品工具:

1)友盟+

2

功能:统计分析、运营工具、行业数据方案

“友盟+“由友盟、缔元信、CNZZ三家公司合并而来,它作为全球领先的第三方全域大数据服务提供商,依托于自主研发的全域数据平台,为客户提供一站式数据化解决方案。一方面提供数据产品,包括App开发工具、基础统计工具、广告效果监测工具等,另一方面提供数据输出及专业的数据分析和咨询服务,包括DMP、垂直领域数据化解决方案、数据运营分析报告等。

地址:http://www.umeng.com/

2)GrowingIO

3

GrowingIO最大特点在于无埋点即可采集全量、实时用户行为数据,适合自身需求高,技术能力弱产品。

地址:https://www.growingio.com/

3)神策分析

4

与GrowingIO相对,神策采用有埋点技术,用户管理方面不仅仅是基于简单的用户属性,而是用完整的用户行为创建分群。

地址:https://www.sensorsdata.cn/

4)数极客

5

数极客同时支持有埋点和无埋点,收集的数据偏差可以保证在5%之内。

地址:http://www.shujike.com/

PS:目前市场上,数据采集技术一般可分为以神策数据为代表的有埋点技术,和以GrowingIO为代表的无埋点技术。

有埋点技术需要在企业的网页或者客户端内写入相应的代码,虽然操作过程相对复杂,但其可以采集后端模块的数据,这些数据也会更细致。例如当用户提交了一个订单,有埋点技术不仅可以采集到“订单提交”这一行为事件,还可以获取到该订单的具体商品类别信息。有埋点的技术的缺点在于,因为目前大多企业在采集数据这一块没有一定的规划,大多都是提出一个需求之后,再写入一定的代码,这样就会容易造成整个埋点铺设混乱,极易出现一些故障。

而无埋点技术在操作上会更简单容易一些,只需嵌入服务商提供的SDK,便可以完成一些数据的自动采集工作,我们也能自己设定需要采集的数据。虽然操作上,无埋点技术会更方便,但其缺点在于其采集的数据颗粒度会更粗。

5)BDP

6

BDP主要帮助我们快速完成多数据整合,建立统一数据口径,支持自助式数据准备(ETL), 并提供灵活、易用、高效可视化探索式分析能力,帮助我们构建贴合自身业务的企业洞察,并将数据决策快速覆盖各层员工及应用场景。

地址:https://www.bdp.cn/

2.用户管理工具:

1)talking data

7

talking data亮点在于用户分群分析和多维钻取分析,意味着任何数据报表,都可以单独过滤出渠道、版本、特征用户群的数据。

地址:http://www.talkingdata.com/

2)同道

8

同道采取跨平台的用户数据收集,帮助我们全面分析用户,熟知每个用户,从而实施精细化的运营策略。

地址:http://www.tongdao.io/

3)诸葛IO

9

诸葛IO的优势是支持细化到个体的数据分析,自有的用户价值和流失预测,以及目前部分完成的用户标签体系。另外,诸葛io支持Android、iOS和HTML(JS)三个平台。

地址:https://zhugeio.com/

4) Google Analytics统计服务

10

谷歌分析平台可以让我们衡量在各种设备和环境的企业用户交互,该平台提供了所有的计算资源用来收集,存储,处理,并报告交互情况。 Google Analytics不仅可以帮助我们衡量销售与转化情况,而且能提供新鲜的深入信息,帮助我们了解访问者如何使用自己的网站,访问者如何到达网站,以及如何吸引他们不断回访。

地址:https://developers.google.com/

5)Mixpanel

11

Mixpanel是一个Web服务,让我们可以跟踪用户的使用习惯,并提供实时分析。Mixpanel提供的“人物”功能,可以让我们根据用户在应用程序内采取的行为对其发出推送通知。Mixpanel API是一个RESTful API,以JSON格式返回响应。

地址:https://mixpanel.com/

6)云巴实时统计

12

云巴实时统计可以对目标用户进行实时统计,并对用户行为数据进行实时分析。

地址:http://yunba.io/products/analytics/

3.事件管理工具:

1)Countly

Countly是一个开源的实时移动应用分析平台。从移动设备收集数据,然后可视化这些信息来分析移动应用程序的使用和最终用户的行为。支持事件跟踪,几乎每个用户操作行为都可被跟踪,包括应用付费、广告点击等。Countly不仅支持iOS、Android、Blackberry,还支持Appcelerator Titanium和Uniy3D SDK。

地址:http://resources.count.ly/v1.0/docs/downloading-sdks

4.移动应用工具:

1)百度移动统计

13

百度移动统计是基于移动APP统计的分析工具,为我们提供专业、免费、高效的移动统计分析服务,。主要亮点是多维交叉分析、实时访客分析、自定义用户留存分析、页面访问流分析以及灵活的数据发送策略。

地址:https://mtj.baidu.com/

2)腾讯移动分析

14

腾讯移动分析是一款专业的移动应用统计分析工具,支持主流智能手机平台。我们可以方便地通过嵌入统计SDK,实现对移动应用的全面监测,实时掌握产品表现,准确洞察用户行为。 不仅仅是记录,移动App统计还分析每个环节,利用数据透过现象看本质。腾讯移动分析还同时提供业内市场排名趋势、竞品排名监控等情报信息。

地址:http://mta.qq.com/mta/

3) 讯飞开放统计

15

讯飞开放统计是专业而全面的移动应用统计分析工具,从运营与产品优化的角度出发,并借助语音云特有的语音语义数据分析能力与海量第三方聚合数据,提供精准的统计分析数据,帮助我们读懂我们的用户,提升应用竞争力。

地址:http://data.xfyun.cn/

4)应用雷达

16

无论我们在哪里,使用什么终端设备,只要我们的设备能够上网,都可以完美监控我们的App报表。

地址:http://www.ann9.com/

5)机客应用统计

17

机客应用统计是机客网向广大开发者免费提供的移动应用开发辅助工具,我们在移动应用中添加机客应用统计SDK,即可在自身没有云端计算资源及服务器部署能力的情况下,快速实现各种联网统计功能,更好的分析用户需求数据并修改产品。

地址:http://dev.159.com/index.php/auth/tongji

6)Flurry Analytics

18

Flurry Analytics是个免费的移动应用数据分析平台,可应用于iOS、 Android、Windows Phone、HTML5、Hybrid应用、移动Web、 BlackBerry和JavaME。

地址:https://developer.yahoo.com/

7)ad-brix

19

IGAWorks是韩国一家移动数据分析平台。IGAWorks以数据为基础,一直以来免费提供移动开发所需的多样服务。旗下的ad-brix,是免费的移动数据分析平台。

地址:https://partners.igaworks.com/

8)机锋统计

20

机锋统计是机锋网向广大开发者免费提供专业的移动应用开发辅助工具,我们在移动应用中添加机锋统计SDK,即可在自身没有云端计算资源及服务器部署能力的情况下,快速实现各种联网统计功能,更好的分析用户需求数据并修改产品。

地址:http://dev.gfan.com/

9)魔方

魔方主要为我们提供移动应用数据统计分析、移动应用开发实用组件和精准的消息推送等服务;通过搭建专业、实用、稳定可靠的移动应用服务平台,帮助我们创造更有价值的移动应用产品,并可实时监控、把握应用 产品的数据、运营和推广等情况。

地址:http://mga.imofan.com/login.jsp

10) Cobub开发者中心

21

Cobub Razor开源移动应用统计分析系统是免费开源的移动应用统计分析系统,收集App用户的数据并在后台展示,帮助App的运营做好Marketing,帮助设计人员贴近用户并改进App,可以说是开源版的友盟、Flurry、谷歌移动分析。

地址:http://www.cobub.com/en/

5.游戏应用工具:

1) DataEye

22

DataEye是专注于游戏的决策型精准数据分析平台,协助游戏开发和运营人员依据数据分析成果,有效驱动游戏设计改进和精细化运营。

地址:https://www.dataeye.com/

2) TalkingData Game Analytics

23

TalkingData Game Analytics是TalkingData Analytics的移动游戏专用版,专门针对移动游戏进行优化,统计指标、观测维度更具针对性,旨在帮助移动游戏开发商快速实现移动游戏的数据化运营。

地址:https://www.talkingdata.com/product-game.jsp

3)莲子统计

24

莲子统计主要提供移动应用统计分析服务、手游数据分析服务和部署企业自有数据平台服务。

地址:http://www.lotuseed.com/site/index.html

6.其他精品工具:

1) 百度统计

25

百度统计是百度推出的一款免费的专业网站流量分析工具,能够告诉用户访客是如何找到并浏览用户的网站,在网站上做了些什么,有了这些信息,可以帮助用户改善访客在用户的网站上的使用体验,不断提升网站的投资回报率。目前主要提供趋势分析、来源分析、页面分析、访客分析、定制分析等多种统计分析服功能。

地址:http://tongji.baidu.com/web/welcome/login

2)LeanCloud统计

26

LeanCloud统计内置稳定实时的数据统计分析服务,从用户量,用户行为,渠道效果,自定义事件等多个维度,帮助您更清楚的了解用户习惯,提高用户黏性和活跃度。(原名AVOS Cloud,现更名为LeanCloud)。主要亮点是AVOS Cloud 提供一流的 web 管理后台,可以通过它看到各个维度的统计结果。

地址:https://leancloud.cn/

3) Appsee

27

Appsee是一个简单而强大的视觉应用分析平台,在我们的移动应用程序中,使我们能够测试,了解和改善用户体验。通过Appsee平台,我们将能够准确了解用户如何与移动应用程序进行交互。

地址:https://www.appsee.com/downloads

4)Segment.io

29

Segment.io允许我们将数据一键分送给多家数据分析服务提供商,我们只需部署一次,即可随意开关各个平台的数据通道。

地址:https://segment.com/docs/sources/

5)有数

30

有数简称data.u,是一种可以灵活内置于手机应用运行过程的简单、透明的分析手段。data.u实现了高效采集分析数据,并初步整理减少冗余数据,压缩封装数据,利用智能策略传输数据,不挤占用户的网速。开发者可基于此开发包分析应用程序的运行情况,包括页面停留时长、页面跳转率、按时间或地理位置分析用户量、用户的发展情况等信息,同时为用户提供了在线配置参数获取等实用功能。

地址:http://dev.10086.cn/datau/portal/main/index.jsp#

 

移动应用产品推广服务:APP推广服务  青瓜传媒广告投放

本文作者@鸟哥笔记  由(青瓜传媒)整理发布,转载请注明作者信息及出处!网站地图

78

]]>
//www.f-o-p.com/40853.html/feed 0
细数App推广要做哪些事!懂渠道,做方案,有人脉,分析竞品…… //www.f-o-p.com/37041.html //www.f-o-p.com/37041.html#respond Thu, 09 Mar 2017 07:29:10 +0000 //www.f-o-p.com/?p=37041 1 (56)
1,学会竞品分析
竞品分析是各个岗位上最重要技能之一。
只有产品经理需要做竞品分析吗?在我来看,包括CEO在内的任何一个职位都是需要“竞品分析”,竞品分析可能不是一定要去分析竞品的某一个产品功能,而是站在不同角度去分析竞品的方方面面,前提是有价值的产品或者团队。产品经理的竞品分析可以是分析竞品的功能结构,设计师的竞品分析是设计风格,管理层的竞品分析是团队结构、管理方式,而对于App推人员来说,竞品分析是分析竞品的投放策略,能够帮助我们了解渠道市场,并且,如果你是一个App推广小白或者是刚接触一个陌生领域的App,观察分析竞品的投放渠道也是帮助你快速学习了解这一领域的重要途径。所以,竞品分析会让你有两个最有价值的收货:
①.学习竞品投放策略
②.观察竞品投放动态
2,学会控制预算、成本
现在根据创投数据公众号「氢资讯」数据,平均一天有12家企业获得融资的消息,似乎互联网公司永远都有花不完的钱,App推广是一家创业公司相对来说预算最多的一个职位,手里面拿着公司领导给的预算,但是,能够控制预算带来最高的效果是每一个老板想看到的,应该也是推广人自己的优秀项目经验,所以在控制成本预算之前你必须了解到:
你的产品处于一个什么阶段?
从产品角度来说,几乎没有一个产品可以傲娇到可以上线之后就可以不顾一切的推广营销,如果有,请谨慎购买。一个好的产品务必要经过不断的打磨,这个过程产品架构仍不完善,用户体验不是很好,这个时候更多的应该是从运营的角度来不断的通过各种运营机制来完善这款产品,而不是盲目的花大价钱来获取可能不是你精准的用户,或者是你最想到却留不住的用户。
提前做好推广计划:
没有计划的花钱对公司来说就是再给自己挖坑,所以,为了对公司负责也对自己项目经验负责,请在推广之前做好推广计划。
3,基本的商务能力
App推广避免不了会做一些对外的合作,这个时候你就需要跟渠道、跟其他CP、对领导或者老板接触,为了一个合作,你有可能需要不断的去尝试各种方法使这个合作能够达成从而是你的业绩距离KPI能够更进一步,这个时候你就要具备基本的商务能力,这个技能也不是与生俱来的东西,有的时候需要卖个萌、耍个贱,毕竟,KPI就是钱啊。
4,跑会、参加活动
抛开App推广这个属性,多数互联网人热衷于参加各种活动以及社交。或许为了合作,或者为了学习,当然也或许为了礼拜五的下午不上班(很多活动都是礼拜五下午开的),所以,除了上面说的几点,你可能还需要参加一些活动。最重要能够有所收获:
1.学习App推广知识
2.结交更多人脉
3.去谈一个合作
4.了解更多渠道资源
5.一个很好的不上班不扣工资的理由
5,关注行业热点
对行业保持一个足够的关注度是每一个领域对应的每一个职位都应该具备的基本素质,这个和自身的App推广并无直接的关系,能够带给你的是一个优秀习惯以及延伸的其他技能的学习和提升。除此之外,行业发生和工作相关的动态是作为一个营销推广人员可以把握的。当然,热点营销成功几率很小,但是需要不断去尝试。
6,建立自己的人脉关系
如果上面说的几点都没有的话,那么,你如果在这个圈子内有足够的人脉资源也是大大加分的,这里所说的人脉关系不仅仅是加了微信好友,留了手机号码,而是真正能够在你需要的时候可以和你一起合作的人脉关系。举个栗子,你正在策划一个大会活动,那么这个时候你需要足够多的宣传渠道支撑,这个时候,你希望某某App可以做协办方支撑,但是现在你的活动并不能给对方带来曝光或者其他利益的情况下,如果是一个陌生人别人肯定会对你不屑。因此,足以见得人脉关系的重要性。
7,精通推广渠道
对于大多数公司来说,首先衡量一个人能不能胜任App推广一职无法第一眼看到以上几点,所以,掌握App推广渠道是最基本的一点。下面是为CP列举的最基本的渠道信息:
安卓应用商店
市场:百度手机助手/360手机助手/应用宝/小米应用商店/华为软件商店/联想乐商店魅族应用商店/OPPO可可软件商店/vivo手机助手/三星应用商店/锤子应用商店/豌豆荚/应用汇/搜狗手机助手/木蚂蚁/PP助手(UC淘宝手机助手)/安智…
需要掌握技能:
  • 如何提交应用?
  • 免费帮/总榜自然排名规则?
  • 专题如何申请?
  • 常规活动有哪些?
  • ……
IOS渠道:市场:AppStore/PP助手/海马助手/同步推/海马助手/快用苹果助手/XY苹果助手…
(AppStore)需要掌握技能:
  • 怎么上热门搜索?
  • 怎么提升关键词排名?
  • 评论如何优化?
  • 如何做联想词?
  • 怎么写描述/标题/关键词?
  • 如何提升榜单排名?
  • 如何获得编辑推荐?
  • ……
收费模式:CPA/CPD/CPC/CPS…
  • 那家积分墙的量大?
  • 用户质量如何?
  • 行业口碑如何?
  • 功能是否全面?
  • 先付款后付款?
  • 功能是否全面?刷下载?留存
今日头条/陌陌信息流/UC浏览器/新浪微博粉丝通/搜狐汇算信息流/腾讯系信息流)
  • 开户要求?
  • 素材审核?
  • 售卖方式?
  • 优化技巧?
  • ……
线下渠道:
地推/地铁公交/楼宇电梯/广告传媒…
  • 人群受众
  • 地理位置
相关合作:
超级App(付费广告/免费合作)
  • 用户属性
  • 用户量级
  • 用户质量
  • 合作方式
  • (付费)售卖方式
换量合作
合作形式:App之间换量/App和应用商店换量
换量目的:激活换激活/下载换下载/曝光…
换量目形式:
  • 内容合作
  • 资源置换
  • 应用内推荐
PR传播
  • H5传播(准备/策划/制作/落地/传播/转化)
  • 明星/大V(资源/推广形式)
新闻稿件传播:
  • 创业融资报道
  • 相关科技媒体
其它:数据分析数据分析平台:(百度统计/友盟统计/诸葛IO/TalkingData/自有统计后台)分析维度:
  • 用户使用时长
  • 用户使用频次
  • 用户流失分析
  • ……
②渠道效果评估
  • 下载率
  • 用户活跃度
  • 单个下载用户成本
  • 单个激活用户成本
  • ……

移动应用产品推广服务:APP推广服务  青瓜传媒广告投放

本文作者@群主 由(青瓜传媒)整理发布,转载请注明作者信息及出处!网站地图

78

]]>
//www.f-o-p.com/37041.html/feed 0
如何更有价值采集数据、高效分析数据? //www.f-o-p.com/30279.html //www.f-o-p.com/30279.html#respond Sat, 10 Dec 2016 09:47:56 +0000 //www.f-o-p.com/?p=30279 12

上回说到,用户行为数据的意义和价值《为什么要做用户行为分析?》,以及互联网产品用户模型的构建,这其中就包含了对数据的采集和分析两大块儿,本文将从数据采集的三大要点、如何让分析更有价值更高效、以及数据分析思维三部分展开聊。

一、数据采集的三大要点

1、全面性

数据量足够具有分析价值、数据面足够支撑分析需求。

比如对于“查看商品详情”这一行为,需要采集用户触发时的环境信息、会话、以及背后的用户id,最后需要统计这一行为在某一时段触发的人数、次数、人均次数、活跃比等。

2、多维性

数据更重要的是能满足分析需求。灵活、快速自定义数据的多种属性和不同类型,从而满足不同的分析目标。

比如“查看商品详情”这一行为,通过埋点,我们才能知道用户查看的商品是什么、价格、类型、商品id等多个属性。从而知道用户看过哪些商品、什么类型的商品被查看的多、某一个商品被查看了多少次。而不仅仅是知道用户进入了商品详情页。

3、高效性

高效性包含技术执行的高效性、团队内部成员协同的高效性以及数据分析需求和目标实现的高效性。

基于以上三点,我们看如何让数据采集更准确、分析更有用以及团队内部更高效。

二、数据分析价值性和高效性

step1:明确数据驱动目标

数据采集切忌大而全,数据分析需求也是随着产品不断迭代的,明确长远和当前阶段的分析需求,让分析更有目的性,技术执行更高效。

场景举例:

小葛是公司的产品经理,小诸是技术,最近两人都认识到了数据在产品运营和决策中的重要性,经过几个数据平台的调研,最后,选择了诸葛io,并且已经明确了当前阶段的数据需求…

  • 小葛:“小诸忙吗,文档中那个,登录流程、注册转化、购买转化、分享转化等是长远需要关注的数据指标,务必埋上哦;对于发现功能呢,两个礼拜后我们会提交一个新版本,先不埋了啦,辛苦啦。”
  • 小诸:“小葛,你真棒,一会儿我就给你埋好了呢!”
  • 小葛:“哦,还有,注册那个页面我们有个推荐人选项,需要用户输入推荐人账号,采集的时候别采账号啊,我只想看注册用户是否有推荐人的分布,把那个属性处理成判断哦”
  • 小诸:“这简单。那今晚…”

看着小葛转身要离开了,小诸欲言又止,默默地继续敲代码了…

step2:按需采集数据

带着需求和分析目标去采数据,不仅避免了数据冗余带来的无从下手,也避免了全量采集之后却不知道要分析什么的尴尬。

图示为埋点范例:

123

图示文档可由数据分析需求人员整理,表格梳理让需求人员和技术人员协同更高效,也大大提升了后续的分析价值和效率

step3:多维交叉定位问题

对数据的应用可分为一般分析和探索性分析。一般分析包括对日常数据如新增、活跃、留存、核心漏斗的监测分析,也包括对各部门日常业务的数据监测。监测每日增长,分析异常情况,比如对注册失败、支付失败事件的监控和及时优化。

探索性分析是对数据的高级应用。对核心事件的相关性分析、挖掘产品改进关键点等,如促进用户购买的相关性分析、找到促进留存的Ahamoment等。

step4:优化产品、优化运营策略

基于数据反映的问题,做到实时监控和及时解决,基于分析得到的增长启发,去做A/B测试、灰度测试、去MVP实践。

step5:衡量

衡量是数据分析到实践的最后一步,当然,也可能是第一步。有时候我们看似找到了增长点,但实验发现,事实并不如预期,不要灰心,不要丧气,更不要不吃饭,分析过程中对用户的理解、对业务的深度挖掘可能会让下一次优化产生累计价值。

三、数据分析思维

数据采集固然重要,数据分析的方法论也很重要,但不要迷信数据,因为更重要的,可能是人的创造力和想象力!数据分析也从来不是一劳永逸的,产品在不断迭代,业务在不断更新,从认知到决策,数据更多的是起到了辅助的作用,从梳理需求、到采集、到分析、到实践、再到衡量,它是始终循环在企业增长的整个过程中的。

最后,那些改变世界的程序猿,他们始终希望能用自己的技术创造更多的价值,很多时候,他们要的可能是明确的数据需求、明确的分析目标,以及一套高效协同的方法,毕竟,谁都认为:能准确解决问题、能驱动业务增长,更!重!要!

其实小诸想说,埋点其实很简单,今晚不用加班喽~

 

移动应用产品推广服务:APP推广服务  青瓜传媒广告投放

本文作者@诸葛IO 由(青瓜传媒)整理发布,转载请注明作者信息及出处!

dibu

]]>
//www.f-o-p.com/30279.html/feed 0
你不可不知的36款数据分析工具! //www.f-o-p.com/13315.html //www.f-o-p.com/13315.html#respond Wed, 15 Jun 2016 08:02:06 +0000 //www.f-o-p.com/?p=13315 如今的移动应用早已不再是某种结构单一、功能简单的工具了。当我们的移动应用变得越来越庞杂,我们便会需要借用分析工具,来跟踪和分析App内的每一个部分。幸运的是,目前市面上有许多数据分析工具可供App开发团队选择。
 
事实上,这些新一代的数据分析工具,将可以监测发生在App中的每一个细小的事件。如果你曾经想追踪你的用户,知道他们从哪个平台下载了应用、看到你的用户在App内的跳转路径、了解哪个页面在App内最受欢迎,你一定能在以下三十余款分析工具中找到你的菜。
 

Computer showing analysis chart and graph in office

 
一、综合分析平台
 
1、应用排名分析平台
 
App 榜单监测专业分析国内外主流App市场榜单实时动态,全方位监控app竞争态势,推广效果尽收眼底,清晰衡量自己的排名位置与下载数。拥有专业的App测 评团队,提供专业的开放平台测评服务,由资深的开发者,用真实产品实际测试后撰写测评,具有较强的客观性和指导意义。该平台还针对优秀App进行孵化支 持,提供场地、人员、技术支持、财务支持、法务支持等。
 
2、应用雷达
 
国 内第一家推出苹果App Store专业化App搜索、ASO搜索优化服务、推出iOS App交易平台的网站。专注于iOS应用深度推广运营,拥有苹果应用市场标准用户搜索行为热词库及APP历史搜索数据跟踪,为iOS开发者提供APP排名 和推广跟踪平台。全渠道整合,满足产品精准运营需求,量级监控,规避风险。
 
3、AppBK
 
全 球唯一一家AppStore中文拓词、组词的SaaS服务平台,苹果官方合作伙伴,拥有苹果高级接口及AppStore全球所有国家的实时数据,专业的 App Store大数据分析与决策平台,对搜索引擎的理解更加深刻,坚实的大数据基础和从业经验,100%真人CPA用户,让优化安全可控,没有风险。
 
二、用户人群细分
 
1、Upsight (含付费项目)
 
Upsight是供移动应用开发人员使用的分析工具。其功能包括:用户分组、漏斗分析、留存分析、应用内购买组件和无限的数据存储空间。Upsight支持几乎所有移动平台,包括iOS、安卓、Java Script、Adobe Air等等。
 
2、Tap stream (免费)
 
Tap stream的亮点在于对用户生命周期的分析。如果你想知道用户每天都在哪里搜索你App的信息、或者他们在某个渠道上的实际下载频率,Tap stream将成为值得你信赖的信息源。Tap stream支持iOS、Android、Windows和Mac应用程序。
 
3、Flurry Analytics (免费)
 
Flurry几乎是移动应用分析的“行业标准”。Flurry帮助你跟踪用户会话,以便您可以看到用户在操作App时遇到了什么困难。你也可以创建自定义人群分组,以求更好地了解App的用户群体。
 
4、Capptain (含付费项目)
 
Capptain 是一款实时分析工具,它看起来就像是一组数据仪表板。不仅为你跟踪实时发生的用户行为,更可以监测到用户的使用反馈,甚至将用户群体进行实时分组,基于用 户的地理位置向他们发送即时消息等等。Capptain适用于iOS、Android,HTML 5,黑莓,Windows等平台。
 
5、Followapps – App精细化分析平台
 
6、MobileAppTracking – 用户数据跟踪与预测模型
 
 
7、MixPanel(付费)
 
Mixpanel是一个Web服务,让开发者跟踪用户的使用习惯,并提供实时分析。Mixpanel提供的“人物”功能,可以让你根据用户在应用程序内采取的行为对其发出推送通知。Mixpanel API是一个RESTful API,以JSON格式返回响应。
 
8、AMPLitude(付费)
 
一款为您深入挖掘用户滞留,转化和参与状态的分析工具。可以为您获取用户与实时活动状态和无限制的个人用户时间表行为的完整视图。
 
9、Heap(付费)
 
Heap为您自动捕获在您的网站或iOS应用每个用户的动作,并让你衡量这一切后的事实。
 
四、触屏热点分析
 
10、HeatMa.ps热图 (需付费)
 
热图是为数不多的App热区追踪工具。热图帮助App开发人员记录所有屏幕触碰、手势(扩大/缩放/滑动)和设备定位。你甚至可以得到详细的用户触屏热点分布图。唯一的遗憾是,热图仅支持iOS App。
 
11、Heat Data (需付费)
 
Heat Data是另一个移动应用及网站的热区工具。你可以跟踪你的用户触及屏幕时所发生的所有行为:点击、滑动、伸缩放等等,并获得详细的可视化分析报告。 Heat data是跨平台的,你要做的全部事情就是复制一行JS代码嵌入你的App并使用它。但如果你不想在你的App里嵌入JS,那么你就需要使用另一个工具。
 
五、应用内购买行为跟踪
 
12、Appsflyer (含付费项目)
 
Appsflyer 是一款自带分析功能的一体化营销工具。你可以在同一款工具内跟踪应用内购买、软件安装情况和用户使用表现。除了支持主流的iOS、Android和 Windows系统外,Appsflyer还支持其它平台与引擎,包括:Unity、Marmalade、Appcelerator等。可谓是真正地实现 了全平台支持。
 
13、Appfigures (含付费项目)
 
Appfigures 可以在追踪事件的同时,监测事件相关的应用内销售情况。Appfigures汇集了来自不同渠道的应用评分、下载量和支付金额,并予以呈现。 Appfigures同样适用于iOS、Android和Mac平台。他们也提供API接口,便于你使用和获取任何其它你想要的东西。
 
14、Swrve – 应用内购买分析平台
 
六、渠道追踪、广告投放于应用评分
 
15、Apsalar (含付费项目)
 
Apsalar是专供大型应用程序商店使用的数据分析。除了基本的用户分析功能以外,Apsalar还拥有强大的广告管理组件。
 
16、App Annie (含付费项目)
 
App Annie是很个性的分析工具,它不再分析用户活动,而只跟踪应用的下载量与销量。无论是iTunes、Google Play还是亚马逊商店,你都可以通过App Annie直接了解App的下载量、评级、评论和排名。
 
17、Askingpoint (含付费项目)
 
Askingpoint的亮点同样在于对App评分的跟踪。事实上,它的主要功能就是通过提示让更多地用户来评论你的App。虽然小编并不认为这是提升用户评价的最好途径,但借助这款工具,还是可以帮助开发者更简单地获取并跟踪评论的。
 
18、Distimo’s AppLink
 
跨平台的渠道分发与转换率跟踪工具。他们还有自己的App,帮你随时随地监测App运营数据。
 
19、Trademob – 移动营销分析
 
20、Adxtracking – App内广告运作、优化与分析工具
 
七、基本数据统计
 
21、亚马逊移动分析 (免费)
 
移 动数据分析只是亚马逊庞大生态链中的一个部分,是一款跨平台的基本分析工具。你可以用它跟踪你发布在的iOS、安卓,当然还有亚马逊平台的应用。它拥有你 所能想到的所有典型的数据分析功能。同时它还拥有A/B Test的功能,帮助运营者在一个应用上测试不同的运营模式。
 
22、Roambi (需付费)
 
Roambi专注于服务大型研发团队。这是个3合1分析工具,它集成了基本数据分析、移动应用的BI报告和程序异常预警等三大功能。Roambi还允许你将数据回传到其Box组件中,生成易于团队成员阅读的数据报告
 
23、App celerator(含付费项目)
 
App celerator的主要业务是手机应用的整合营销组件,但是他们的应用分析工具也足以独当一面。在App celerator工具里,你可以跟踪新用户和自定义事件的会话时长。
 
24、Countly (含付费项目)
 
Countly是一个开源的移动应用分析工具。与大多数开源项目不同的一点是,Countly实际上相当漂亮的。通过Countly你能很容易地看到你的App在不同的平台、屏幕大小和设备上的分布情况。
 
25、Kontagent – 移动应用数据分析组件
 
26、Claritics – App BI数据分析
 
27、Appsee – 可视化移动应用分析
 
28、Yozio – 移动应用数据动态跟踪
 
29、AppsFlyer – 移动应用的检测和数据跟踪
 
30、Telerik – 移动应用分析
 
八、专注手游分析
 
31、Honey tracks (含付费项目)
 
Honey tracks的不同点在于,它专注于游戏的移动应用分析。Honey tracks被配置来帮助游戏工作室跟踪超过90项的指标,包括手游用户的参与度和留存分析。
 
32、Playtomatic (免费)
 
Playtomatic也是一款开源App分析工具,但它更专注于手游领域。Playtomatic帮助游戏开发者追踪游戏玩家的在手游内的地理位置和成就,支持多个平台,包括:iOS、Android、JavaScript、HTML 5,Unity 3D引擎等等。
 
33、Applicasa – 手机游戏管理平台
 
如你所见,国外目前已经有许多工具可以帮助开发者跟踪和评估App运营数据。开发者和运营者们不妨尝试其中几款,集合其各自的最佳功能。

本文作者@诸葛IO 由(青瓜传媒)整理发布,转载请注明作者信息及出处!

产品推广服务:APP推广服务    广告投放平台    龙游游戏

78

]]>
//www.f-o-p.com/13315.html/feed 0